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Abstract

The purpose of this study was to develop a differential-item-functioning (DIF)/impact

methodology capable of accurately isolating underlying, conceptually-based causes of DIF

(differing item performances across examinee groups that are matched on ability) and impact

(differing item performances across examinee groups that are not matched on ability) using data

from the quantitative section of two administrations of the Graduate Record Examinations

(GRE®) General Test. Analyses indicate that the �SIBTEST bundle methodology� that was

developed in the study for GRE quantitative forms is effective and, as such, is exportable to

various Educational Testing Service (ETS®) settings. This methodology should help improve test

equity of future GRE quantitative forms, as well as test development and standardized tests in

general. The developed methodology elevates statistically based DIF analyses from the mere

screening of already manufactured items to the modification of test specifications and subsequent

test construction processes.

Key words: Differential item functioning, DIF, differential bundle functioning, DBF, impact, test

equity, test development, GRE General Test, SIBTEST, SIBTEST bundle method,

multidimensionality-based DIF paradigm
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Introduction

A central goal of this study was to develop a methodology capable of improving test

equity in general and then, in particular, to apply this methodology to the quantitative portion of

the Graduate Record Examinations (GRE®) General Test and the proposed GRE Mathematical

Reasoning Test. Indeed, an essential aim of this study was to provide useful information

concerning the equity of these tests. This goal and the intended application were accomplished

by further developing the multidimensionality-based differential item functioning (DIF)

paradigm of Roussos and Stout (1996).

The core of the new methodology described here is to carefully bundle test items into

conceptually meaningful and statistically dimensionally-distinct categories, some of which may

then statistically be shown to be associated with gender- or ethnicity-based differences in test

performance. The specific results of the application of this methodology, which are presented in

this report, can be used to (a) evaluate current GRE quantitative test forms and (b) improve test

specifications and item development of future GRE quantitative, Mathematical Reasoning, and

other mathematics-oriented tests � with a goal of improving test equity. Moreover, our new

DIF/impact methodology, applied in this report to GRE quantitative data, is completely general

in its applicability to test equity. As such, this methodology, referred to as the �SIBTEST bundle

method� throughout, can be applied to test equity evaluation and future test development in

content domains other than mathematics (see Shealy & Stout, 1993, for a description and

evaluation of the statistical DIF procedure SIBTEST).

The particular focus of the analyses presented in this report was the evaluation of

differences in performance by gender- and ethnicity-based groups on the GRE quantitative test.

Analyses between male and female examinees and between Black and White examinees were

carried out using test items and examinee response data from two recent administrations of the

GRE General Test (December 1995 and October 1996). Group differences in examinee

performance were statistically evaluated by examining both impact and DIF for carefully

defined, category-based bundles of items.

For the purposes of this study, �impact� was defined as the difference in performance

across groups of examinees (based on ethnicity, gender, or other defining characteristics) on a

test item or on a category-based bundle of test items. (A �category� is the conceptually-based

organizing principle that was used to form a dimensionally homogeneous bundle of items � that
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is, a bundle of items that all require broadly similar cognitive processing and, as such, are

conceptually and dimensionally homogeneous.) For example, if 60% of White examinees but

only 40% of Black examinees were to correctly answer a particular test item, this item would be

judged as having �impact� against Black examinees. Impact, of course, combines construct-

relevant and construct-irrelevant sources of examinee variation in providing the total difference

in performance across groups.

�DIF,� on the other hand, was defined as the difference in performance across groups of

examinees on an item or category-based bundle of items when examinees have been statistically

matched on a particular cognitive or content construct that is central to the purpose of the test.

For example, if among a group of examinees statistically judged to have the same mathematics

ability, 55% of White examinees but only 45% of Black examinees were to correctly answer a

particular mathematics test item, this item would be judged to exhibit DIF against Blacks.

In summary, impact is the total difference in performance across groups of examinees,

while DIF is the difference in performance across groups of examinees who have been

statistically matched according to some relevant construct. Indeed, impact splits into a DIF

portion and a non-DIF portion. It is simplistic, and in fact incorrect, to conclude that all instances

of DIF constitute evidence of test inequity. In a DIF analysis, even though examinees are

matched on a primary ability that is central to the test�s purpose, examinees can still display

group differences in performance due to the influence of other construct-relevant secondary

abilities that are components of the test�s overall measurement purpose.

To illustrate, consider a hypothetical test of high-school mathematics achievement

consisting of 50% pure algebra and 50% pure geometry items. In addition, suppose that, on

average, females perform slightly better on algebra items and males perform slightly better on

geometry items. Then, by matching examinees on total test score, which measures an overall

mathematics composite of algebra and geometry, a DIF analysis would simply result in many

algebra items displaying DIF against males and many geometry items displaying DIF against

females. This result could provide highly valuable and useful cognitive or test construction

information, but would not constitute test inequity because no construct-irrelevant sources of

examinee variation are present.

Analogously, the non-DIF portion of impact can contribute to test inequity in a quite

subtle way. No matter how precisely one defines the target construct of a particular test, test
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specifications designed to conform to this construct can vary widely. To illustrate, a high-school-

level mathematics achievement test consisting of 40% geometry items and 60% algebra items, as

dictated by test specifications, could display less impact against females than an apparently

equally construct-valid test intentionally consisting of 50% geometry and 50% algebra items.

The idea � a relatively new and pragmatic one � is that when multiple test specifications are

possible and are all valid, test inequity occurs when a set of specifications is selected that

produces larger impact than would other valid sets of specifications (Willingham & Cole, 1997;

AERA, APA, NCME, & JCSEPT, 1999). The design and construction of the Second

International Mathematics and Science Study (SIMSS) and Third International Mathematics and

Science Study (TIMSS) assessments are important practical illustrations of the great variations in

opinion that can exist among education experts concerning what items and what proportions of

different content are appropriate for a test that is intended to measure achievement in a particular

broad content area.

The main focus of the analysis of GRE quantitative data reported here was the amount of

DIF and impact that resulted from the conceptual structure of categories developed for that test.

A prerequisite for a successful category-level DIF and impact analysis is the careful construction

of item categories. In particular, each category must be statistically judged to be (a)

dimensionally homogeneous (that is, all items in the category depend similarly on the latent

abilities controlling examinee performance), (b) conceptually meaningful, and (c) capable of

producing high coding reliability (that is, independent coders of items into categories show a

high rate of agreement). Moreover, different categories must be reasonably dimensionally

distinct. Many, but not all, of our final set of 15 conceptually based categories were defined in

terms of mathematical, or at least quantitative, constructs. This was expected due to the

quantitative/mathematical measurement purpose of the GRE quantitative test.

Overview of SIBTEST Bundle Methodology

Category Development and Coding

There are three distinct stages of category development and coding in an actual SIBTEST

bundle analysis. First, categories are developed that meet the criteria stated in the preceding

paragraph. Second, in order to achieve high intercoder reliability, item coders are trained to

correctly categorize items. Third, the actual coding of items into categories is carried out by

multiple coders using whatever protocol has been developed. An overview of these stages is
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provided below. (The step-by-step process of defining and selecting preliminary and final

operational categories is explained more fully later in this report.)

Category development. In general, potential categories should be gleaned from multiple

sources to produce a large preliminary set of categories. In any application of our SIBTEST

bundle methodology, each application will likely draw from different sources of preliminary

categories. However, in all applications, such sources should include:

1. categories substantively viewed as having the potential to produce DIF or impact

2. categories determined by test specifications and test structure

3. categories obtained using statistical techniques designed to discover dimensionally
homogeneous bundles

In advising that categories be included from the third source, above, we rely on the

obvious link between statistical dimensional homogeneity and substantive homogeneity of

bundles. Namely, a statistically dimensionally homogeneous bundle will tend to be substantively

homogeneous as well, and vice versa. Thus, the third source results in statistically bundled items

that can be judged to possess similar latent multidimensional ability structures from the

multidimensional item response theory (IRT) modeling perspective.

In the construction of GRE quantitative categories for the present study, we culled

preliminary categories from three different sources:

� Educational Testing Service (ETS®) research staff proposed categories that they
judged to have the potential to produce DIF or impact.

� We refined broad, GRE-quantitative, specification-based content categories that were
also supplied by ETS.

� We derived categories using statistical tools that organize items into dimensionally
homogeneous bundles and that rely on dimensionality analysis techniques that are
specifically designed to be sensitive to the varying cognitive components influencing
examinee performance on items.

Using these three different category sources, we selected 26 preliminary GRE

quantitative categories for possible inclusion in the operational set of GRE quantitative

categories for our DIF and impact analyses. In order to produce operational categories from the

26 preliminary categories, some categories were accepted in their original form, others were

www.ztcprep.com



5

dropped, and the definitions of still others were altered. This evolution was intended to make the

operational categories more statistically dimensionally distinct from one another and/or to make

the items within each category more dimensionally similar to one another.

The evolution from preliminary categories to statistically homogeneous operational

categories is justified in part because items within each category should be as conceptually

homogenous as possible. If items within a category are conceptually heterogeneous, the bundle

as a whole may show little to no category-level DIF, and yet, homogeneous subbundles may

display DIF. Further, even if category-level DIF is statistically detected, a single conceptual

cause will either be lacking (due to multiple subbundle-based causes) or statistically hidden due

to confounding (with a single cause for the observed bundle-DIF existing but its identification

obstructed by the existence of several subcategory-based potential causes).

In addition to satisfying within-category homogeneity, operational categories should be

relatively distinct in terms of both statistical dimensionality and substantive characteristics. This

is accomplished in part by making them relatively independent or negatively associated. Here,

the independence of two categories, A and B, means that the assignment of an item to category A

appears probabilistically unrelated to its being assigned to category B. The negative association

of two categories means that the assignment of an item to category A makes it appear less likely

the item will be assigned to category B. These two probabilistically motivated concepts are made

explicit later in the report.

Importantly, it is the combination of two categories being both relatively dimensionally

homogeneous and being independent or negatively associated that makes them conceptually

distinct from one another. By contrast, in the case of two strongly positively associated

categories, a disproportionate number of items will be common to both category-based bundles.

In this case, the two categories will be dimensionally similar and hence have rather similar

conceptual definitions. It then becomes statistically difficult to accurately assign the relative DIF

influence of each of the two associated categories using our SIBTEST analysis-of-variance

(ANOVA) method. Moreover, it would be confusing and unnecessarily chaotic to the content or

test design expert to have two categories with rather similar definitions. Importantly, coding

reliability would also suffer.

Training of item coders. In the GRE quantitative project, the second stage of category

development and coding � the training of item coders � began with the comprehensive training
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of our two item/category coders by our GRE quantitative category expert, using our final 15

operational categories. Training was judged to be complete only when the category expert

determined that the coders were each successfully (validly) and reliably (displaying high

intercoder reliability) assigning items to categories. In categorizing items, the two coders used

our carefully worded final category descriptions, provided later in Table 2, in addition to what

they had informally learned about the final categories from the category expert through extensive

discussion and performance feedback.

Coding of items. In order to correctly assign items to categories, our research staff solved

at least two-thirds of the 900 GRE quantitative items that were to be coded (some items could be

reliably and validly coded without being solved). Our trained coders achieved intercoder

agreement on 80-85% of the item/category assignments. To assign the 15-20% of items for

which disagreement occurred, the item coders conferred and reached consensus. Throughout the

coding process, the item coders consulted the category expert when appropriate to be certain the

categories were being appropriately interpreted.

The details of assigning items to categories vary from application to application, but

across all applications, certain requirements must be met:

� At least two item coders must assign every item.

� Coders must have access to a careful and extensive definition of each category so that
they can clearly determine how to categorize a given item. (Examples of prototypical
items belonging to each category are also very useful for coders during this process;
see the Appendix to review prototype items for our final categories.)

� Category experts must carefully train and evaluate the performance of the item
coders.

� In order to obtain unique item-to-category assignments for all items, coders must
achieve a high degree of intercoder reliability and must follow a protocol for
resolving disagreements.

We emphasize that no matter how carefully the definitions of item categories are written,

a category expert (or experts) must still carefully train coders to provide principles of correct and

reliable coding that are not evident from the written definitions alone. In other words, the

training process must go beyond merely training coders to thoroughly understand the written

category definitions. Perhaps a useful analogy is that the careful and correct enforcement of

American legal statutes requires both a thorough reading of written statutes as well as the study
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of precedents that illustrate how the written statutes were applied � with the latter step

clarifying aspects of the written statutes that may have been ambiguous.

Category-Based DIF Estimation

Once coders assigned items to operational categories, we estimated the amount of DIF

that was present in each category-based bundle for each group comparison (Blacks vs. Whites or

males vs. females) using the statistical SIBTEST procedure (Shealy & Stout, 1993). The

SIBTEST bundle analysis was first conducted separately on GRE quantitative data from the

December 1995 administration and then on GRE quantitative data from the October 1996

administration, thus allowing for cross-validation. The two analyses each resulted in a

quantification of the amount of category-based differential bundle functioning (DBF) that was

present, along with a statement of the statistical hypothesis-testing significance (strength of

statistical evidence of category DBF) associated with each category for each administration and

group comparison.

DBF is defined to be the expected difference in bundle score across the two groups of

examinees, given that examinees have been statistically matched on an appropriate construct

(which, ideally, has been judged to be construct-valid). The magnitude of this expected bundle

score difference can be easily interpreted on the number-correct test-score scale. We consider

DBF a more appropriate label than DIF for our purposes, because the SIBTEST bundle method

assesses items collectively in bundles. Thus, when appropriate, we refer to DBF rather than DIF

throughout the remainder of this report.

Preliminary Description of Results

As is discussed in detail later, the DBF analyses indicated the possibility of a few

inconsistent results across the two administrations. As a result, further statistical methods were

developed to quantify and test hypotheses in regard to these possible inconsistencies so as to

better understand and explain them. In particular, category-bundle heterogeneity would be one

likely suspect of the cause of such inconsistencies. Indeed, an important and, in the past,

intractable DBF issue has been that items classified as being in one category are often also

categorized as being in one or more other categories � a phenomenon we refer to as

�overlapping categories.� That is, the assignment of items to category-based bundles can, and
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often does, result in the assignment of an item to two or more bundles.

The important issue of bundle heterogeneity needs a careful explanation. A category-

organizing principle selects items that all share a common conceptual character. Statistically, this

can be thought of as a dominant dimension on which all the items of the category �load.�

However, as indicated, items can and should be assignable to more than one category. More

explicitly, items organized into a bundle by a particular category-organizing principle will also

be influenced by dimensions associated with other categories to which they have been assigned,

which play a secondary role for items in that bundle.

For example, an item put into the �QCD� category � which includes items that cannot

be solved from the information given � could also be classified as Applied Geometry With

Algebra (an applied geometry problem with an algebra component) and as a Speededness item

(an item slower test takers are unlikely to solve due to its placement at the end of the test). That

is, in addition to measuring the dominant dimension of the category-organizing principle

(dominant because every item of the bundle is influenced by the dimension, which is QCD in

this case), various items of a bundle will also often measure various secondary dimensions, each

of which is the basis of another bundle-organizing principle (secondary because each such

dimension will influence relatively few items of the bundle of interest). Thus, in general, the

final categories developed using our method overlap rather than partition the set of items of an

administration being studied.

Overlapping categories are a serious concern when carrying out DBF analyses because

the secondary dimensions present in a bundle that was formed according to a particular

organizing principle can influence the observed DBF for that bundle. In particular, if the

secondary dimensions that are present vary widely across two administrations for two bundles

resulting from a particular category-organizing principle, the amount of observed DBF for the

same bundle-organizing principle could vary widely across the two administrations. As noted,

the dominant or organizing dimension influences every item of a bundle, and the other

dimensions play a secondary role because each such dimension influences only a limited subset

of items in the bundle. Thus, the observed bundle DBF would mainly be the result of the

dominant organizing dimension and would likely be statistically consistent across test

administrations. Nonetheless, the discovery of DBF and the interpretation of the cause of

observed DBF for a particular category is made much more difficult by the presence of
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secondary dimensions.

In an effort to understand cross-administration inconsistencies that may arise from

overlapping categories, we developed a SIBTEST-based ANOVA approach to disentangle the

influence of overlapping secondary dimensional categories on a bundle�s displayed DBF. As is

related later, this approach enabled us to explain four out of the five inconsistencies across

administrations that were found in our SIBTEST bundle analysis. It is interesting to note that, for

the one inconsistency that our ANOVA approach did not fully explain, the composition of the

(somewhat heterogeneous) category itself changed considerably between the two

administrations. This was a new source of bundle heterogeneity for which we could not make

statistical adjustments. (Our SIBTEST-based ANOVA methods and results are discussed in

detail later in this report.)

In addition to DBF, we completed an analysis of the impact associated with each of our

15 operational categories. For each category and group comparison (males vs. females and

Blacks vs. Whites), the amount of impact per item was calculated for both test administrations.

As is discussed later, the amount of impact per item was found to be statistically significant for

all categories and both group comparisons. This is consistent with the difference in score

distributions observed between male and female examinees and White and Black examinees on

the GRE quantitative test.

In summary, the main result of our analysis is the set of 15 final item categories for the

GRE quantitative test, together with the associated DIF and impact per item estimated for each

category and a listing of which categories display significant hypothesis-test-based DBF. Using

SIBTEST-based statistical hypothesis testing, a subset of these categories for which there is

strong evidence of DBF across administrations was also obtained.

We strongly view the methodology developed for this project to have the potential to be

usefully applied to standardized-test design and analysis settings other than the GRE quantitative

test. At the very least, the results should be useful in the possible future development of a GRE

Mathematical Reasoning Test. Further, we believe that our methodology, which grew out of the

Roussos and Stout multidimensionality-based DIF paradigm (Roussos & Stout, 1996) and

combines statistical and substantive considerations in forming and analyzing categories for DBF,

can significantly improve test equity in any standardized test setting and thus, in particular, for

any ETS-designed standardized test.
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Data

The December 1995 administration of the GRE General Test, referred to in this paper as

the first administration from which data for the present study was obtained, contained two

operational forms of 30 items each and 20 pretest forms of 30 items each. A random sample of

six of these pretest forms and the two operational forms (for a total of 240 items) was used to

construct the operational categories. For the DBF and impact analyses, another random sample

of six pretest forms was added to the original eight forms, producing a total of 420 items to be

used in those analyses. Likewise, the October 1996 administration, referred to in this paper as the

second administration from which data was obtained, contained two operational forms and 14

pretest forms, each of which had 30 items. All 14 pretest forms and the two operational forms

were used in the DBF and impact analyses, for a total of 480 items.

For both administrations, each examinee was administered all 60 operational items,

whereas each examinee was in effect randomly assigned to and administered only one pretest

form. To be effective, a DBF analysis requires examinees to be matched according to a score that

is appropriately construct-valid and administered to all examinees, so that the score matching

provides a reliable and valid approximation for the dominant ability (dimension) being measured

by the test. In order to obtain such a valid score on each administration, the corresponding 60

operational items were used as the matching subtest. Thus, the DBF and impact results reported

here are based upon the analysis of 360 (420 - 60) pretest items from the first administration and

420 (480 - 60) pretest items from the second administration, for a total of 780 (360 + 420) items

analyzed.

To complete the DBF and impact analyses, reference and focal groups (�reference� and

�focal� being standard DIF terminology) were defined as males and females and Whites and

Blacks, respectively. Except for obvious registration-form coding errors, or omissions that made

male-female classifications impossible, all examinees were included in the DBF and impact

analyses for the males versus females comparison. For the Blacks versus Whites comparison,

examinees were split into three categories � White, Black, and other � based on information

obtained from GRE registration forms. Only examinees who described themselves as �White,

non-Hispanic� or �Black or African-American� were included in the analyses. In the first

administration, approximately 650 females, 350 males, 700 Whites, and 100 Blacks were

assigned to each pretest form. In the second administration, approximately 750 females, 350
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males, 800 Whites, and 60 Blacks were assigned to each pretest form. From the conventional,

one-item-at-a-time, DIF analysis perspective, these samples are medium to quite small in size.

Once the final set of operational categories was determined, all pretest items chosen from

the first and second administrations were coded as belonging to one or more of the final item

categories according to the process described earlier. The median number of pretest items per

category was 24 in the first administration and 26 in the second administration. The Algebra

category (problems that require any type of algebraic manipulation) and the Probability and

Statistics category (problems having either a probability or statistics component and

combinatorial problems) each had at least 75 items per category in all four cases. All categories

had at least 17 items per category in both administrations, with the exception of the Line Graph

category (problems that require the interpretation of a graph representing a trend with a line,

segmented lines, or a curve) in the first administration, which included no Line Graph items. The

resulting item-by-category incidence matrix for each administration became part of the basic data

used in our analyses. Our category expert took special care to prevent drift of category definition

between the first and second administrations.

Method

Construction of Preliminary and Final Operational Categories

Specifications for Operational Categories

The 15 operational categories were developed by being required to have four

characteristics: Each was to be (a) conceptually coherent (based on cognitive content, item

format, location on test, and so on), (b) exhaustive (every item must be coded in at least one

category), (c) relatively homogeneous with respect to the statistically inferred latent

multidimensional structure, and (d) approximately independent or negatively associated. Because

dimensional homogeneity holds as well, this last characteristic insures dimensional

distinctiveness of categories. We explain these four requirements in more detail below.

Conceptual coherence. To be �conceptually coherent,� all items in a category must share

a common conceptual basis. For example, as noted earlier, the QCD category � the group of

quantitative comparison items with the correct answer D, �the relationship cannot be determined

by the information given� � is such a conceptual category. Conceptual coherence is essential,

because a category found to display DBF or impact must be clearly and easily interpretable to
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those involved in writing and modifying text specifications, as well as to those involved in

managing item writing and test production. Specifically, if a category is judged to have a

deleterious effect on test equity, this category must be clearly understood from the

content/cognitive perspective so that test developers can avoid including items belonging to the

category in future test specifications, item writing, and test assembly.

Exhaustiveness. Because it is desirable to include all items in the analysis, exhaustiveness

is usually essential. If the investigator does not require the analysis of all items, then this

requirement can of course be dropped. We strongly discourage category-level analyses in which

a sizeable proportion of items are not assigned to any category-based bundles. In general, if

satisfying this criterion is difficult, a richer, more inclusive set of categories is probably needed.

Relative homogeneity. �Relatively dimensionally homogeneous� means that all of the

items in a category are judged statistically to best measure approximately the same composite

construct � a construct that combines the basic dimensions of the latent structure model. The

basic idea of dimensional homogeneity is intuitive from a geometric viewpoint applied to the

postulated latent abilities controlling examine test performance. Each item has a mathematically

defined and intuitively understood direction of best measurement in the multidimensional, latent

IRT model space of examinee abilities. This direction is loosely interpreted as the composite

construct the item measures (or measures best). For example, an algebra item measures best in

the algebra axis direction and measures much less well in the geometry axis direction. For a

rigorous definition of the concept of the direction of best measurement of an item, see Zhang and

Stout (1999).

Intuitively, the dimensional homogeneity of a category means that the directions of best

measurement of all the items in a category-based bundle should be close, thereby forming a tight

�cone� in the multidimensional latent space. For example, if the three dimensions of a

hypothetical high-school-level mathematics test are algebra, geometry, and trigonometry, then an

algebra item should measure best in a direction close to the algebra axis of the three-dimensional

(algebra, geometry, trigonometry) IRT model�s multidimensional, latent-ability coordinate

system. Thus, an algebra bundle of items should form a fairly tight cone with a conic axis that

lies close to the algebra coordinate axis of the three-dimensional coordinate system. By contrast,

a trigonometry item with strong algebraic and geometric components would measure best in a

composite direction that is roughly equidistant from all three axes. A category-based bundle
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consisting of similar composite trigonometry items would form a fairly tight cone with a conic

axis that is oriented in a direction that is roughly angularly equidistant to all three axes.

As detailed in a later section (Creating Dimensionally Homogeneous Final Categories),

the dimensional homogeneity of a category is statistically assessed by appropriately combining

item-pair homogeneity indices for all pairs of items in a category-based bundle into a bundle

index of homogeneity, denoted by h. To obtain these needed item-pair homogeneity indices,

appropriately defined item-pair conditional covariances (our basic building blocks for assessing

latent multidimensional structure) are used to calculate, in a computationally complex but natural

way, a dimensional homogeneity index for every item pair. This homogeneity index is scaled to

lie between -1 and 1, where a value close to 1 indicates high item-pair dimensional homogeneity

(that is, both items measure best in approximately the same direction of the latent ability space),

and a negative value, or even a value close to 0, indicates low item-pair dimensional

homogeneity (both items measure best in very different directions of the latent ability space).

Obtaining a very high degree of dimensional homogeneity for a category while also

maintaining sufficient conceptual broadness for the category (needed to maintain content

relevance) is difficult and often not achievable. Further, the broad nature of such categories

precludes a high degree of dimensional homogeneity. However, obtaining a reasonably high

degree of within-category dimensional homogeneity for sufficiently broad but conceptually

coherent categories is achievable, and is also essential to successfully completing a statistically

effective and useful category-level DBF and impact analysis using the SIBTEST bundle

methodology.

As already emphasized, if a category-based bundle displaying DBF or impact has a

dimensionally heterogeneous bundle-organizing principle, it is extremely difficult to determine

the conceptual cause or causes, because in fact there are various homogeneous subcategories that

are each possible sources of the DBF or impact. In particular, a category-organizing principle

that is heterogeneous (i.e., allows for multiple subcategories) could easily produce a bundle with

a different conceptual character when applied to another administration of the same test, thus

leading to an apparent inconsistency in observed category-level DBF across administrations.

Indeed, the internal dimensional heterogeneity of one of our operational categories, Probability

and Statistics, exhibited this problem.

The bundle-based analysis is only useful when the conceptual organizing principle of the
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bundle can be substantively articulated and unambiguously assigned as the cause of the observed

bundle DBF or impact. Excessive heterogeneity of the bundle-organizing principle places a

burden on the achievement of this goal. Further, an overly heterogeneous category can obscure

or even hide important sources of DBF or impact. For example, a heterogeneous bundle may be

viewed as having its items� directions of best measurement broadly dispersed geometrically

about the bundle�s direction of best measurement (the direction of best measurement of a bundle

can be viewed as the average of the directions of best measurement of its member items). It is

certainly possible that one direction within the bundle�s cone of best item-measurement

directions could tend to favor the focal group, while another direction could tend to favor the

reference group. (Indeed, this was precisely the case for the quite dimensionally heterogeneous

Probability and Statistics category.) One unfortunate possibility is that the overall category

displays no statistically detectable DBF, while in fact there are strong and detectable DBF-

producing subcategories with opposite group effects that could have been found by way of a

finer and more dimensionally homogeneous bundling.

The key to the heterogeneity challenge is to define bundles that are relatively

dimensionally homogeneous, and yet sufficiently conceptually broad and substantively well

defined to be important to test equity efforts. Breadth of definition is important, because the

bundles each need to contain a sufficient number of items to provide reasonable statistical power

in the face of relatively small examinee group sizes for pretest items. Indeed, one important

statistical observation is that decent hypothesis-testing power was obtained in this study in spite

of relatively small sample sizes, because large bundles of items were available for DBF analysis.

In particular, the unusually small number of Black examinees who took each GRE quantitative

pretest item made having large numbers of items per bundle especially important to this project.

Independence or negative association and distinctiveness of categories. The necessary

approximate independence or negative association of two categories needed to produce category

distinctiveness is achieved by requiring an appropriately defined correlation (of item

membership) between the two categories to be small or negative, thus allowing a probabilistic

interpretation of category distinctiveness. For each pair of categories, this correlation was

defined in a natural way: Each item of the set of items used to define our categories belonged to:

� neither category (0, 0)
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� both categories (1, 1)

� the first but not the second category (1, 0)

� the second but not the first category (0, 1)

Since 240 items from the first administration were used to define categories, 240 couplets

indicated possible membership in each of the two categories for each of the 240 items. Clearly,

we could compute the ordinary Pearson-product-moment correlation using these 240 bivariate

�observations� as a measure of category pair similarity. For example, consider two categories for

which all the items had couplet (0, 0) or (1, 1). This would mean the two categories were

identical and had a correlation of 1.

By contrast, having all (0, 1)s and (1, 0)s would produce two totally distinct (no overlap

at all) categories and a correlation of -1. Consider two categories to which the 240 items were

assigned independently (that is, the fact that an item was assigned to category 1 made it no more

likely to have been assigned to category 2). Suppose also the two categories were each

dimensionally homogeneous. Then, even though there was some category overlap, the categories

would be forced to be quite distinct from one another. Our convention was to judge two

categories to be approximately independent or negatively associated if the observed correlation

between them was less than 0.3 (either near 0 or possibly negative, and hence producing

conceptually distinct categories as required). This bound was chosen so that two acceptable

categories from the set of final categories would indeed measure widely dissimilar cognitive

constructs, as guaranteed by their having at most low overlap.

The importance of achieving approximate independence or negative association of

categories for the SIBTEST bundle methodology was discussed earlier. A large positive

correlation leads to two categories having a large overlap and hence measuring best in rather

similar directions in the IRT model�s multidimensional latent space. When two category-based

bundles measure best in similar directions, it becomes statistically difficult to assign the relative

bundle-DBF influence of each category (this is analogous to sorting out the influences of

variables when high multicollinearity holds in multiple regression).

For test equity analysis and future test development purposes, we certainly want the

categories used for these purposes to be widely separated (distinct) from one another in the latent

ability space and, as a result, substantively distinct from one another. Thus, it would be
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inappropriate to have two conceptually similar categories in the final operational set of

categories. Additionally, having conceptually similar categories would make achieving high

intercoder reliability very difficult. To illustrate, compare the confusion of interpretation that

existed for our sometimes highly correlated preliminary categories (provided later in Table 1)

with our conceptually and correlationally distinct operational categories (provided later in Table

2). The latter set of categories satisfied the convention that all correlations between two

categories should be less than 0.3.

Multistep Process for Achieving Operational Category Specifications

To achieve the four basic category characteristics (conceptual coherence, exhaustiveness,

relative dimensional homogeneity, and approximate independence or negative association) we

used a multistep process. As the first step, 26 preliminary categories were compiled from the

three sources described earlier, as detailed in the next section. Second, the 26 preliminary

categories were ranked in order of their decreasing internal dimensional homogeneity, using the

h index of category dimensional homogeneity (defined in a later section, Creating Dimensionally

Homogeneous Final Categories). Third, a subset of the 26 categories was constructed by

advancing through this ranking one by one and eliminating the category under consideration if it

had a correlation greater than or equal to 0.3 with any of the previously selected, more

homogeneous categories. In other words, only categories that were both internally relatively

dimensionally homogeneous and approximately independent or negatively associated, and hence

heterogeneous between categories, were placed in the final list of categories.

As the fourth and final step, the resulting set of categories was examined substantively

from the mathematical content/cognitive perspective and then modified slightly to produce

greater substantive homogeneity by the occasional addition or deletion of one or more items to a

category-based bundle. The final result was a list of relatively dimensionally homogeneous and

relatively distinct categories that were each substantively coherent and mutually exhaustive. This

process of producing final operational categories is explained in more detail in the sections that

follow.

Development of Preliminary Categories

The preliminary set of item categories was developed by combining categories obtained
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from three different sources, as discussed previously. Cognitive categories from the first source

� categories ETS research staff judged as having the potential to produce DIF or impact �had

been recently categorized by ETS researchers as potential DBF-producing characteristics of

items (Ann Gallagher, Judith Levin, & Mary Morley, personal communication, approximately

February 1999). We used some of these cognitive categories � namely QCD, QCC (quantitative

comparison items for which the correct answer is C, �the two quantities are equal�), and Word

Conversion (word problems in which examinees must go through a nontrivial process of

translating words to algebraic formulae or numerical analysis) �fairly directly as categories

(although we altered the Word Conversion category slightly in order to increase intercoder

reliability). In several cases, ETS categories were combined, split, or modified to create

categories that obeyed our four criteria for inclusion. For example, there were clear connections

between ETS spatial categories and our geometry categories, and our Calculation Intensive

category (problems in which a straightforward solution requires nontrivial numerical calculations

or appropriate estimations) absorbed the closely related Short-Cuts/Multiple Solution Paths

category provided by ETS.

For the second source � broad GRE quantitative, specification-based content categories

� the four categories provided by ETS (Algebra, Geometry, Pure Arithmetic, and Data) were

refined to be more distinct and content specific. For example, the Data category (problems that

require quantitative interpretation or translation of information, such as the synthesis of

numerical data presented in charts, graphs, tables, or paragraphs) was split into several smaller

categories � Probability and Statistics and four categories involving means of displaying data

(Table, Bar Graph, Line Graph, Pie Graph). The formation of refined categories was

accomplished through an interplay between statistical assessment of bundle homogeneity and

content considerations. This process allowed final categories to overlap, which did not occur

with the original four specification-based categories. For example, after refining, an item could

be classified in both an algebra category and a geometry category.

Finally, the third source � the dimensionality-sensitive, item-bundle-producing,

hierarchical cluster analysis program based on a conditional-covariance-based concept of

proximity, HCA/CCPROX (Roussos, Stout, &Marden, 1998) � was used to form conceptually

interpretable categories (bundles of items)  based on the 60 operational items from the first

administration.
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The resulting categories from each source were studied, and preliminary category

descriptions were formed based on the item contents of each bundle. Occasionally, an item was

added or deleted in order to increase substantive homogeneity. Table 1 displays the set of 26

explicitly defined preliminary categories produced as a result of combining the categories

obtained from our three sources. (For comparison purposes, the reader should be aware that final

operational categories are displayed later in Table 2.)

Since categories gleaned from each source were developed relatively independently,

several pairs of preliminary categories have the same or similar names and/or definitions.

However, slight variations between definitions caused the classification of items into these

categories to differ at least slightly. Since any high correlation between these categories would

be completely removed in the final set of categories by the application of the correlation ≤0.3

criterion, having very similar categories in the preliminary set was not considered at all

detrimental to the success of the method.

Table 1

Preliminary Categories

Category Definition
QCC1 All quantitative comparison items with answer C, �the two quantities are equal.�
QCD1 All quantitative comparison items with answer D, �the relationship cannot be

determined from the information given.�
Word Conversion1 Word problems in which the essential formula or equation needed to arrive at the

correct solution is not straightforwardly obtained from the wording of the problem. For
problems in this category, examinees must go through a nontrivial process of
translating words to algebraic formulae, or to numerical interpretation (when algebra is
not necessary).

Easy Algebra2 Problems that require manipulation of algebraic expressions not involving powers,
roots, or transcendental mathematical numbers such as π or e. This category includes
all problems that require an easy algebra solution, including word problems that
require an easy algebra solution.

Hard Algebra2 Problems that require complicated manipulation of an algebraic expression.
Complicated algebra problems are defined as problems that involve nontrivial powers
(larger integers than 3 and noninteger powers, including square roots), understanding
of π or e, word problems in which the algebraic manipulation is challenging, factoring
expressions, and so on.

 1 cognitive categories; 2 refined general categories; 3 categories from bundle analysis (Table continues)
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Table 1 (continued)

Category Definition
All Solutions2 In order to arrive at the correct solution for these problems, you must include at least one

option that is not given directly in the problem. For instance, to correctly solve a problem
you may need to recognize that both positive and negative numbers can occur in the
problem, or that the numerical manipulation properties of positive numbers differ for
numbers less than one versus numbers greater than one. If the list of options that must be
included is clearly given in the problem, the item does not fall into this category.

Calculation
Intensive2

Problems in which a straightforward solution would involve nontrivial numerical
calculations, usually requiring a shortcut to estimate the calculations (examinees could
easily have solved these problems using a calculator if calculators had been allowed on
the GRE quantitative exam). This category does not include problems in which
straightforward but at most moderately time-consuming calculations suffice. For
instance, a problem that only requires the multiplication of two two-digit integers
would not be included in this category. Instead, the problems in this category involve
calculation (replaceable by appropriate estimations) of large powers, square roots of
imperfect squares, π or e, and so on.

Data2 Problems in which the quantitative interpretation or translation of information is
necessary. This includes traditional interpretation of graphs, long applied word
problems, and rate problems. The essence of the conceptualization behind the category
of items as a whole is that of quantitatively-oriented information filtering and
interpretation. All problems in this category require the synthesis of numerical data
presented in charts, graphs, tables, or paragraphs.

Applied
Geometry2

Problems that require the interpretation of geometric figures and that are not
straightforward in nature. These problems do not merely require the straightforward
application of standard geometry formulae like that of the area of a triangle,
circumference of a circle, perimeter of a square, and so on. Multiple steps are usually
involved to complete them. All problems with geometric figures are not necessarily
applied geometry problems � deductive interpretation of the shape is required. Here
�applied� refers to the need for deductive reasoning rather than to the presence of a
�real-world� setting.

Geometry With
Memorized
Formulae2

Geometry problems that require only memorized formulae to solve them (for example,
straightforward calculations of areas or perimeters, calculation of the length of a
hypotenuse of a right triangle, and so on). Therefore, a problem cannot belong to this
category and to the above Applied Geometry category. Multi-step geometry problems
are not considered to be in this category, even if one of the steps involves calculations
using standard geometric formulas.

Geometry Without
Algebra2

Geometry problems that do not involve the solution of an algebraic equation or
manipulation of an algebraic expression to arrive at the correct answer (they may
contain a variable, but they do not require algebraic manipulation). Note that problems
in this category may be �applied� or �not applied.�

Bar Graph2 Problems that require the interpretation of a bar graph.
Line Graph2 Problems that require the interpretation of a graph representing a trend with a line,

segmented lines, or a curve.
Pie Graph2 Problems that require the interpretation of a pie-shaped graph.
Table2 Problems that require the interpretation of a table containing numerical information.
1 cognitive categories; 2 refined general categories; 3 categories from bundle analysis (Table continues)
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Table 1 (continued)

Category Definition
Pure Arithmatic2 Arithmetic problems with no symbol manipulation (distinct from the Data

categories above and below � just involves straightforward computation of
numbers).

Probability and
Statistics2

Problems having either a probability or statistics component (involving mean,
standard deviation, median, range, flips of coin, drawing from hat, and so on).
Combinatorial problems (e.g., using permutations and combinations) are also
included in this category, since they require a kind of logic that is similar to the kind
of logic required for certain kinds of probability problems.

Number Theory2 Problems that require examinees to understand general properties of numbers. This
includes basic knowledge of the properties of integers, prime numbers, the number
line, negative numbers, and numbers between zero and one. For instance, a question
may require the knowledge that dividing a positive number by a number less than
one gives a value larger than the original number. Or, a problem may give arbitrary
numbers lying on specified intervals of the number line, and ask the examinee to
order the value of the products or sums of these numbers. Problems from this
category are often on the quantitative comparison portion of the GRE quantitative
test.

Easy Algebra3 Problems in which equations or formulas involve only simple algebraic operations
(problems also requiring geometric knowledge or reasoning are excluded), such as
division, multiplication, addition, or subtraction by a constant (includes problems
that require substitution or routine �plug-and-chug�). Problems in this category do
not require the solution of an equation. However, the problems in this category can
also involve simple manipulations of more than one equation (for example, two
equations with two unknowns), provided the algebra required is easy.

Medium Algebra3 Problems that require the manipulation of one or more algebraic expressions with
terms in the expressions involving more complicated manipulations than the above
Easy Algebra category. This includes squaring, taking the square root, or applying
some other simple function; and/or the expression involves a mixture of geometry
with simple algebra. Problems can involve solving a simple equation for which the
solution process involves at most one or two steps.

Hard Algebra3 Problems that require the solution of one or more equations with more than two
steps needed. These problems usually involve expressions with x2, x , or some
other higher-power function of x. The solution may also involve the nonroutine use
of negative numbers or geometry.

Data3 Precisely the problems included in the graphical analysis section of the GRE
quantitative exam. This section is usually comprised of problems 21-25 and
includes five items that all relate to the same graph or figure.

Easy Word
Problems3

Word problems that require neither complex algebraic manipulations nor complex
translations from text to algebraic formulae.

Fractions With
Numbers3

Problems that involve ratios of numbers or simple ratios of variables that require
interpretation and not algebraic manipulation. Algebra problems that require many
steps to arrive at a correct solution do not fall into this category, regardless of the
presence of fractions with numbers in the problem.

1 cognitive categories; 2 refined general categories; 3 categories from bundle analysis (Table continues)
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Table 1 (continued)

Category Definition
Pure Geometry3 Geometry problems that do not require algebraic manipulation of variables. There

may be variables in the problem, but the solution does not require any algebraic
manipulation of the variables. These problems may or may not involve a geometric
shape.

Speededness3 The last several items of each section have been placed in this category. The number
of items on each pretest was determined by looking at the bundle homogeneity
index h for varying length (numbers of items) on each pretest form.

1 cognitive categories; 2 refined general categories; 3 categories from bundle analysis

Creating Dimensionally Homogeneous Final Categories

It is vital that each category included in the final set of categories be dimensionally

homogeneous. As typically initially conceived by users of our bundle DBF methodology, the

category-organizing principles intended to produce the preliminary categories usually result in

item bundles that vary greatly in their dimensional homogeneity. In the present study, the four

broad, specification-based content categories provided by ETS � Algebra, Geometry, Pure

Arithmetic, and Data �were expected to be very internally heterogeneous. Hence, they could

not be used as category-organizing principles until they were substantially refined. By contrast,

because the software used for the third source of categories was designed to produce

dimensionally homogeneous bundles, the resulting categories from that source needed little to no

refining.

The dimensional homogeneity of the various category-organizing principles associated

with the preliminary categories had to be assessed because these categories were candidates for

inclusion in the final set of categories, which were required to be dimensionally homogeneous. In

particular, it was essential to identify items that were dimensionally assigned to the wrong

category-based bundle. Further, it was possible that a preliminary category-organizing principle

produced bundles with so many inappropriately assigned items that the organizing principle itself

needed refinement. This was indeed what happened with the four broad, specification-based,

GRE quantitative categories supplied by ETS.

We developed a conditional covariance-based methodology for the two essential tasks

needed to produce dimensionally homogeneous category-organizing principles that would result

in all items being correctly assigned to bundles. The first of these two tasks was to assess the

appropriateness of all of the category-based item assignments. In particular, we wished to
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remove an item from a category-based bundle when the item was not sufficiently dimensionally

homogeneous, relative to other items in the bundle. Closely related, we wanted the capacity to

reassign poorly assigned items to different category-based bundles with which they were

sufficiently dimensionally homogeneous. Finally, we wanted to refine a category-organizing

principle if it caused too many items to be inappropriately assigned to a bundle, thus creating

excessive heterogeneity within that bundle. In particular, such a bundle could be split to produce

two distinct and more dimensionally homogeneous bundles. In this manner, a possible,

preliminary category-organizing principle could be refined into two actual, preliminary category-

organizing principles. To carry out these three closely related subtasks of the first task, we used a

dimensional homogeneity index defined for all item pairs that was developed by Bolt, Roussos,

and Stout (1998). Importantly, an item should never be shifted nor a category-organizing

principle refined to achieve dimensional homogeneity unless it makes substantive sense to do so

as well.

The second task was to measure the degree of dimensional homogeneity of the items in a

bundle for all preliminary, category-based bundles, once the assignment of items to these

bundles had been clarified and, in certain cases, the defining principles of the bundles had been

refined. This measure was used for the important goal of comparing the relative dimensional

homogeneity of the preliminary categories in order to retain those that were sufficiently

dimensionally homogeneous for inclusion in the final set of categories. To accomplish this, the

index h was defined based on the Bolt et al. (1998) item-pair dimensional-homogeneity index

referred to above.

The foundation of the Bolt et al. (1998) index of item-pair dimensional homogeneity �

as well as of the HCA/CCPROX procedure used as the third source of preliminary categories �

is item-pair conditional covariances. To understand how conditional covariances can provide

information about the latent multidimensional structure of a test, we again use the geometric

viewpoint of the multidimensional latent space introduced earlier (see, Ackerman, 1996, for a

summary of geometric modeling of a multidimensional latent space). This geometric

conceptualization facilitates understanding of the assessment of the dimensional homogeneity of

item pairs.

Recall the concept of the direction of best measurement of an item. Statistically, the idea

is to select the direction in the latent space in which the item displays the highest average Fisher
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information. Similarly, we can intuitively understand and rigorously define the direction of best

measurement in the latent space of the number-correct score on a subset of test items (see Zhang

& Stout, 1999), again using the concept of statistical information. A subset score that is often of

special importance for the SIBTEST bundle methodology is the set of all operational items of a

test. For our purposes, we refer to the direction of best measurement of the total score on the

operational items as the unidimensional latent composite best measured by the test.

Algebraically, this composite is a linear combination of the latent-space coordinate axes with all

axis coefficients positive. Geometrically, this composite is simply a direction in the positive

sector of the latent space (think of it as a vector pointing positively away from the origin of the

latent-space coordinate system in the direction of the best measurement of the test score). For

example, in the two-dimensional latent space of algebra and geometry of a hypothetical high-

school-level mathematics test, the best-measured latent composite of a balanced algebra and

geometry test would be the 45° line away from the origin, equidistant between the algebra and

geometry axes. The intuitive idea is that the test score is best able to discriminate among

examinees in this increasing (combined algebra and geometry) 45° direction in the latent-ability

space.

Item-pair covariances � conditioned on the latent-ability composite best measured by

the test and then averaged over all values of the composite � form the basic building blocks for

latent dimensionality analyses of items and, hence, for the dimensional homogeneity tasks

described above. A positive conditional covariance (understood through the remainder of the

paper to have been averaged over the distribution of the best-measured composite) indicates a

tendency toward dimensional homogeneity of an item pair, while a near-zero or negative

conditional covariance usually indicates dimensional heterogeneity of an item pair.1 For

example, in a two-dimensional test with 50% algebra and 50% geometry items, two algebra

items (thus dimensionally homogeneous) would have a positive conditional covariance, while an

algebra/geometry item pair (thus dimensionally heterogeneous) would have a negative

conditional covariance.

Note that this claim is intuitively clear when viewed properly. Consider an illustration.

For a subpopulation of examinees defined as having 50th percentile (�average�) math ability (a

composite of combined algebra and geometry ability), an examinee of the subpopulation

answering a hard algebra item correctly constitutes evidence of high algebra ability (> 50th
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percentile). This is the case because, although the examinee�s math ability is fixed at the 50th

percentile, his or her algebra ability is not. And because math ability is fixed at the 50th

percentile, there is now inferential evidence that the examinee must have low (< 50th percentile)

geometry ability. Thus, the conditional covariance for the algebra/ geometry item pair is

negative. Similarly, if both items are algebra items, getting a hard algebra item right again

provides evidence of high algebra ability (the inferred low geometry ability is irrelevant), which

increases the probability of getting the second algebra item right. Thus the conditional

covariance of the two algebra items is positive.

A general multidimensional-based theory of how conditional covariances are used to

reveal the latent dimensional test structure is thoroughly presented in Zhang and Stout (1999). In

particular, they show that the larger the conditional covariance is, the more dimensionality

homogeneous the item pair is. If two items have a large, positive conditional covariance, then the

two items are judged to be approximately dimensionally homogeneous and should be assigned to

the same category. By contrast, the smaller (even becoming negative) the conditional covariance,

the more dimensionally heterogeneous the items are (but refer again to Note 1 at the end of the

report for a technical exception to this claim).

For a given test, the set of all item-pair conditional covariances can be put into a matrix

for convenience. For example, if there are 60 test items, a 60-by-60 matrix in which the entry in

the second row, fifth column denotes the conditional covariance between the second and fifth

items would be used. Such matrices of conditional covariances form the basic input for solutions

to the two essential dimensional homogeneity tasks described earlier, and in particular, are used

to compute the Bolt et al. (1998) item-pair homogeneity index.

In the special case of GRE quantitative data used for the present study, the entire pool of

examinees had taken the same set of operational items, and each examinee was, in effect,

randomly assigned to one of several pretest item forms. For a given pretest item form of 30

items, a 90-by-60 conditional-covariance matrix could be constructed that gives the estimated

conditional covariance for every pretest or operational item paired with one of the 60 operational

items. We could define item-pair proximities for each pair appearing in one of the 90-by-60

conditional-covariance matrices using each item pair�s conditional covariance. But we are unable

to extend this to pretest item pairs when each item is part of a different pretest form. The

advantage of using the Bolt et. al. (1998) homogeneity index instead is that it is definable for all
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item pairs.

For the present study, each 90-by-60 conditional-covariance matrix was used to construct

the Bolt et. al. (1998) index of the dimensional homogeneity of every item pair when both items

belonged to the same conditional-covariance matrix. In particular, we obtained a 60-by-60 item-

pair homogeneity matrix for the operational items and a 30-by-30 homogeneity matrix for each

pretest item form (i.e., all item pairs were from the same pretest form), and we obtained a 30-by-

60 homogeneity matrix for pretest/operational item pairs made up in part of pretest items from

each pretest form.

As stated earlier, the Bolt et. al. (1998) item-pair homogeneities are defined not only

within each pretest form, combined with the operational item set, but are also defined between

arbitrary pairs of items, including pairs consisting of two pretest items from different pretest

forms. This was done in the present study by combining different 90-by-60 pretest matrices. The

interested reader can consult the Bolt et al. paper for details of exactly how the homogeneity

index is computed for all item pairs.

The Bolt et al. (1998) index takes values close to one for approximately dimensionally

homogeneous items. Thus, taking one minus the Bolt et al. homogeneity index converts it into a

�proximity� index between item pairs, as needed. For this proximity index, the greater the

proximity-based �distance� between two items, the greater the dissimilarity between the

directions of best measurement of the two items � or in other words, the greater the dimensional

heterogeneity between the two items.

We return to one aspect of the first task: the removal and possible reassignment of those

few items that may have been improperly assigned to various categories. Given our item-pair

proximity index, which was now defined for all item pairs of the test, we wished to determine for

each particular category-based item bundle which items were close to it and which were not. The

intuitive meaning of an item being close to a bundle is that its direction of best measurement is

close to that of the specified bundle. Here, the direction of best measurement of a bundle

(rigorously defined by Zhang & Stout, 1999) could be intuitively thought of as the average of the

directions of best measurement of its member items. The basic input used for assessing the

dimensional homogeneity of all items with respect to a specified bundle was a list of all items

(both inside and outside the specified bundle) ranked in order of increasing distance from the

specified bundle. An item�s distance from a bundle was naturally defined as the average of the
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item�s Bolt et. al. proximities to all the items of the bundle.

Next, the actual distances of the items from the specified bundle were replaced by the

closeness ranks (1, 2, ... 240) of the items obtained from these distances. Thus, test items that

were relatively dimensionally homogeneous with the specified bundle (and hence had a small

distance from the bundle) were ranked relatively close to one, and items that were dimensionally

heterogeneous from the specified bundle were ranked far from one and perhaps relatively close

to 240. Therefore, an item that was ranked relatively close to one but was not in the specified

bundle had to be reexamined to determine if the item belonged in the specified bundle. Similarly,

if an item in the specified bundle was ranked in the middle or closer to 240, it could have been

improperly included in the bundle � or, even if it was correctly assigned, the item may have

been heavily influenced by some other content/cognitive constructs captured by one or more

other bundles. In this case, the direction of best measurement of the problematic item was rather

different from that of the other items in the studied bundle and, hence, from the direction of best

measurement of the bundle. Indeed, if the problematic item had a low rank for one of the other

bundles, it may have been necessary to reassign it to this other bundle of items if it was

conceptually homogeneous with it as well.

This method of ranking items in order of their decreasing dimensional homogeneity to

the specified bundle was also found to be useful in terms of improving dimensional homogeneity

of the preliminary category-defining principles. For example, analysis of each item�s closeness

rankings was used to help refine the four broad, GRE-quantitative, specification-based categories

provided by ETS � Algebra, Geometry, Pure Arithmetic, and Data. The resulting, more

narrowly defined and dimensionally homogeneous categories were then included in the list of 26

preliminary categories. For example, the Geometry category was split into several smaller

categories, each requiring a different type of geometric knowledge. These refined categories then

produced bundles with much smaller closeness rankings for their items, as desired, and thus

produced dimensionally homogeneous bundles.

As intended, ranking items based on their dimensional homogeneity with their assigned

bundle also produced better classification of items into category-based bundles by targeting

certain items for reevaluation. The QCD category provides an example. Ironically and

interestingly from the viewpoint of providing evidence of the effectiveness of the closeness

rankings, these rankings exposed two QCD items that we had incorrectly solved, and thus had
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incorrectly categorized. Additionally, the method correctly indicated that an overlooked QCD-

like item that was not part of Quantitative Comparisons section of the test should have been

included in the QCD category.

In addition to helping form categories that are more dimensionally homogeneous, this

ranking index was also used to complete the second task: using the proximity-based ranks of a

bundle�s items to create a statistic h that indicates each bundle�s degree of dimensional

homogeneity. The creation of such a statistic to assess category homogeneity was necessary

because the dimensionality assessment procedure we often use, DIMTEST (Stout, 1987), can

only test whether a bundle of items is dimensionally distinct from any other specified bundle of

items. DIMTEST cannot assess the dimensional homogeneity of the bundle itself.

Our bundle-homogeneity statistic h was calculated by using the above-described

proximity-based ranks of all test items from the specific bundle for which we desired the h index

to be calculated. Then, using these rankings, the sum of the ranks for those items in the bundle

was calculated. The statistic h compared the observed value of these summed ranks of the items

in the bundle with that of a hypothetical bundle of the same size, the item ranks of which were

evenly distributed among all ranked items (that is, distances from the specified bundle were

evenly spaced). One could intuitively think of randomly placing n items in this hypothetical

bundle. For a category-based bundle with n items, the homogeneity statistic, h, is given by:

h =  item ranks of the bundle� − i=1
n i�

 evenly spaced n ranks −� i=1
n i�

(1)

Note that the centering term i =1
n i�  represents an ideal, totally dimensionally homogeneous

bundle consisting of the n closest items to the bundle actually being the bundle members. Hence,

i =1
n i�  is an appropriate centering quantity. From this defining equation, it is clear that a smaller

h indicates a more dimensionally homogeneous bundle and that h ≥ 0 always holds.

The empirical distribution of h under the assumption that the bundle was randomly

generated (no unifying principle present among the items of the bundle) was obtained by

calculating the h statistic for a simulation of 10,000 randomly generated bundles. Using this

empirical distribution, we obtained the capacity needed to carry out a hypothesis test for

assessing when a bundle is not sufficiently dimensionally homogenous to have resulted from a
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coherent bundle-organizing principle. In the next section we will see that h is vital to the process

of ensuring that the final bundle-organizing categories produce dimensionally homogeneous

bundles.

The Reduction Process: Obtaining the Operational Categories

The set of 240 items (six pretests plus two operational tests) from the first administration

was classified into the 26 preliminary categories. Next, the homogeneity indices of these

categories (using h) and degree of dimensional distinctiveness among the categories (as

measured by the correlations between all pairs of category-based bundles) were evaluated in

order to arrive at a relatively dimensionally homogeneous and approximately independent or

negatively associated group of final categories. A description of how the preliminary set of 26

categories was then reduced and modified follows.

The preliminary categories were ordered by h from most to least dimensionally

homogeneous, as shown in Figure 1. Each category was then considered for inclusion in the final

set of categories in decreasing order of its internal dimensional homogeneity. At each stage, a

category was accepted provided its correlation with other already selected members of the final

set of categories was sufficiently low (less than 0.3; recall that a low correlation equals

approximate independence and that a negative correlation equals negative association).

For example, QCD � the most dimensionally homogeneous category2 � was chosen as

the first member of the final set of categories. Then, the correlation between QCD and the next

most homogeneous category, Line Graph, was evaluated. Since the magnitude of this category-

pair correlation was less than 0.3, satisfying our criterion, the highly dimensionally

homogeneous Line Graph category was judged to be sufficiently distinct from the first chosen

category and was thus also admitted as an operational category. The process was continued in

this manner.

Unfortunately, because of the high level of correlation between some of the preliminary

categories, several categories were targeted for elimination, causing some items to become

unclassified. To alleviate this problem, some categories that otherwise would have been

eliminated were redefined to make them sufficiently more distinct. These redefined categories

were then included in the final list of operational categories. For instance, Applied Geometry was
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refined into a category more distinct from Geometry Without Algebra by extracting from it a

new category, Applied Geometry With Algebra, which retained all Applied Geometry problems

having an algebra component. The remaining items from the original Applied Geometry

category were then moved to the Geometry Without Algebra category. The result is two new

categories (Applied Geometry With Algebra and Geometry Without Algebra) that are less

associated, and hence more distinct, than the original two, positively associated categories of

Applied Geometry and Geometry Without Algebra.

One reason categories were not required to be nonoverlapping is that most GRE

quantitative items integrate several mathematical concepts, and we thus wanted to code many of

the items into overlapping categories that reflect the simultaneous influence of several major

content/cognitive processes. For instance, a QCD problem is more accurately coded if we can

acknowledge that it is also a Geometry Without Algebra problem. This overlapping allows items

to be more accurately coded, instead of forcing each one into a single nonoverlapping category,

which would be a drastic over-simplification.

During the categorization process, the Probability and Statistics category was extremely

problematic. Probability and Statistics is a relatively large category, clearly defined, although not

internally dimensionally homogeneous from either the content or the statistical dimensionality

analysis perspective. In fact, it was the only category placed in the final set of 15 categories that

had a homogeneity index above the 5% hypothesis-testing rejection level (thus not rejected) of

the empirical, simulation-produced distribution of h under the null hypothesis of a randomly

generated category. Thus, the h value for Probability and Statistics is consistent with the null

hypothesis that items were assigned randomly to the category � random assignment of items to

a category being the antithesis of a dimensionally homogeneous category.

Unfortunately, most questions in the Probability and Statistics category cannot be

classified in any of the other categories. Additionally, parsing the category into more

homogeneous subcategories would result in numerous microcategories from the content

perspective. Thus, since classifying all items in at least one category was judged more important

than improving homogeneity by dropping or dividing the Probability and Statistics category, this

category was included as an operational category in its current and somewhat heterogeneous

form. Table 2 displays the final operational categories. (To achieve a better understanding of

these categories, see the Appendix for examples of prototypical items from each category �
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except Speededness, which depends on test-form placement. The items exhibited in the

Appendix are disclosed items from many different administrations and are distinct from items

included on the two administrations analyzed in the paper, which were undisclosed items.)

Table 2

Operational Categories

Category Definition
Algebra Problems that require any type of algebraic manipulation. Items in this category are

often also classified as Geometry With Memorized Formulae, Applied Geometry
With Algebra, Word Conversion, and so on. A problem with a straightforward
application of a formula (e.g., plugging in numbers) is not considered Algebra if
that is the only requirement of the problem.

Calculation
Intensive

Problems in which a straightforward solution would involve nontrivial numerical
calculations, usually requiring a shortcut to estimate the calculations (examinees
could easily have solved these problems using a calculator if calculators had been
allowed on the GRE quantitative exam). This category does not include problems in
which straightforward but at most moderately time-consuming calculations suffice.
For instance, a problem that only requires the multiplication of two two-digit
integers would not be included in this category. Instead, the problems in this
category involve calculation (replaceable by appropriate estimations) of large
powers, square roots of imperfect squares, π or e, and so on.

Fractions With
Numbers

Problems that involve ratios of numbers or simple ratios of variables that require
interpretation and not manipulation. Algebra problems that require many steps to
arrive at a correct solution do not fall into this category, regardless of the presence
of fractions with numbers in the problem.

Bar Graph Problems that require the interpretation of a bar graph.
Line Graph Problems that require the interpretation of a graph representing a trend with a line,

segmented lines, or a curve.
Pie Graph Problems that require the interpretation of a pie-shaped graph.
Table Problems that require the interpretation of a table containing numerical information.
Applied Geometry
With Algebra

Problems that require the interpretation of geometric figures that are not straight-
forward in nature and that require algebra. These problems do not merely require
the straightforward application of standard geometry formulas like that of the area
of a triangle, circumference of a circle, perimeter of a square, and so on. Multiple
steps are usually involved to complete them. (All problems with geometric figures
are not necessarily applied geometry problems � deductive interpretation of the
shape is required. Here �applied� refers to the need for deductive reasoning rather
than to the presence of a �real-world� setting.)

Geometry Without
Algebra

Geometry problems that do not involve the solution of an algebraic equation or
manipulation of an algebraic expression to arrive at the correct answer (they may
contain a variable, but they do not require algebraic manipulation). Note that
problems here may be �applied� or �not applied.�

(Table continues)
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Table 2 (continued)

Category Definition
Geometry With
Memorized
Formulae

Geometry problems that require only memorized formulae to solve (for example,
straightforward calculations of areas or perimeters, calculation of the length of a
hypotenuse of a right triangle, and so on). Therefore, a problem cannot belong to
this category and to the Applied Geometry With Algebra category. Multi-step
geometry problems are not considered to be in this category, even if one of the steps
involves calculations using standard geometric formulas.

Number Theory Problems that require examinees to understand general properties of numbers. This
includes basic knowledge of the properties of integers, prime numbers, the number
line, negative numbers, and numbers between zero and one. For instance, a question
may require the knowledge that dividing a positive number by a number less than
one gives a value larger than the original number. Or, a problem may give arbitrary
numbers lying on specified intervals of the number line, and ask the examinee to
order the value of the products or sums of these numbers. Problems from this
category are often on the quantitative comparison portion of the GRE quantitative
test.

Probability and
Statistics

Includes problems having a probability or statistics component (involving mean,
standard deviation, median, range, flips of coin, drawing from hat, and so on).
Combinatorial problems (e.g., using permutations and combinations) are also
included in this category, since they require a kind of logic that is similar to the kind
of logic required for some probability problems.

QCD All quantitative comparison problems with answer D, �the relationship cannot be
determined from the information given.�

Speededness The last four items of each section have been placed in this category. This number
of items (four) was determined by looking at the bundle homogeneity index h for
end-of-section item sequences of varying length on each pretest form.

Word Conversion Word problems in which the essential formula or equation needed to arrive at the
correct solution is not straightforwardly obtained from the wording of the problem.
For problems in this category, examinees must go through a nontrivial process of
translating words to algebraic formulae or to numerical analysis (when algebra is
not necessary).

Analysis and Results

DBF Analysis of Final Operational Categories Using SIBTEST

As a preliminary step in the analysis of the average amount of DBF produced by different

categories of GRE quantitative items, the SIBTEST procedure (Shealy & Stout, 1993) was used

to estimate the amount of DIF for each of the 780 pretest items. Indeed, this informational step is

always useful as a part of the SIBTEST bundle method for background. For each pretest item,

the SIBTEST DIF value, denoted as � β , was calculated using the 60 operational items from the

corresponding test administration as the matching, or �valid,� subset.

From the construct validity viewpoint, total score on the 60 operational items is an

observable, empirical approximation of the unobservable, unidimensional, latent-ability
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composite best measured by the GRE quantitative test (refer to the earlier discussion of the

direction of best measurement of a test). For example, matching on total test score on a high-

school-level mathematics test balanced between algebra and geometry amounts to attempting to

match examinees on the algebra/geometry composite best measured by the test. Using total test

score from the GRE quantitative operational test as an approximation for the latent-ability

composite best measured by the exam, the DIF item analysis determined which items perform

differentially across groups of examinees. Although the option was not needed in this study, the

SIBTEST matching subset can, in general, be any subset of items of a test, not necessarily the

operational items of the analyzed test.

For a single item on an arbitrary test, the SIBTEST � β  DIF value is the estimated average

difference in the probabilities of correctly answering the item for two randomly chosen

examinees from each of the two examinee groups (in our case, either Blacks vs. Whites or males

vs. females), given that the two groups have been matched on a score that approximates the

composite ability best measured by the test. A positive value of the SIBTEST � β  statistic

indicates DIF against the focal group (in this case, females or Blacks), while a negative value of

the SIBTEST � β  statistic indicates DIF against the reference group (in this case, males or

Whites).3 Using a numerical example, if � β  = 0.1, then the estimated average probability

(averaging over matching-score values) of answering the item correctly for a randomly chosen

reference-group examinee is 0.1 greater than the average probability of answering the item

correctly for a randomly chosen focal-group examinee. Since each pretest item is disjoint from

the matching subset of operational items used to calculate the � β  DIF statistic, the values of the

pretest item � β  s are not artificially required to sum to zero over all pretest items. By removing

this artificial requirement that is present in most other DIF-analysis approaches, this SIBTEST

DIF-analysis approach allows us to obtain an unbiased estimate of the amount of DIF for each

item.

In addition to estimating the amount of DIF associated with each individual item, the

SIBTEST procedure can estimate the amount of DBF associated with a set, or bundle, of items.

In the GRE quantitative setting, the 15 operational categories were used to form separate bundles

of pretest items to be analyzed for DBF. For each pretest form, the SIBTEST method was used to

estimate the amount of DBF associated with each of the 15 operational categories using the 60
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operational items from the corresponding test administration as the matching subset. Each

resulting bundle � β  value is the estimated average score difference on the bundle between the two

examinee groups, given that the two groups have been matched on GRE quantitative operational

test score, which approximates the composite ability best measured by the test. This choice of

scaling for � β  allowed us to directly assess the influence of the pretest bundle DBF on the total-

test-score scale. For example, if a six-item bundle on a 50-item test yields � β  = 2.0, the estimated

DBF influence of the bundle, averaged across the entire latent composite ability range, will be a

reduction of 2 in the test score of a randomly chosen focal-group examinee compared to a

randomly chosen reference-group examinee. The amount of observed DBF is of practical

importance if the estimated focal-group reduction in total test score will have serious societal

consequences, as determined by the size of the estimated reduction in test score and the use of

the test (e.g., part of the admission process to graduate school).

Each GRE-quantitative category bundle � β  is in fact the sum of its individual item � β s

(this a general property of SIBTEST). As in the case of DIF for each GRE quantitative item, the

pretest-item category bundle � β s are not artificially required to sum to zero over pretests for a

fixed category or over all categories and pretests. Thus, we also have an unbiased estimate of the

amount of DBF for each category-based pretest bundle relative to the scale best measured by the

GRE-quantitative operational test items. For each of the 15 categories, 12 bundle � β s were

calculated for each of the 12 pretest forms taken from the first administration, and 14 bundle � β s

were calculated for each of the 14 pretest forms taken from the second administration (since each

category was not present in every pretest form, a particular category could have fewer � β s).

SIBTEST bundle � β s are approximately normal (Shealy & Stout, 1993) with theoretical

mean β  and estimated standard error (SE) denoted by � S E( � β  ) , where the parameter β  represents

the true amount of DBF present. Given the approximate normal distribution for � β , the value of a

particular bundle � β  for a particular pretest form can have a considerable amount of variability

depending on the magnitude of its SE. Thus, with probability one, � β  does not equal the true β .

In fact, it is likely to be off from β  by as much as ± 1 � S E( � β  ) . More precisely, only about two

thirds of the time can we expect � β  to fall within ± 1 � S E( � β  )  of the true β , and about one third of

the time we can expect � β  to fall outside 1 � S E( � β  ) , in either direction.
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Therefore, under the null hypothesis of no DBF, a single bundle � β  divided by its

estimated standard error, � S E( � β  ) , would be distributed approximately normally with mean zero

and standard deviation one. Thus, for a fixed category, when the hypothesis of no DBF is true, it

is very likely that at least one SIBTEST bundle � β  (out of 26 pretest bundles) would be

significantly different from zero (using a Z test and a 5% level of significance), falsely indicating

a significant amount of DBF present for that category-based pretest bundle. In other words, even

if the category of interest did not display DBF, there would likely be at least one pretest form for

which the category would demonstrate significant DBF. Thus, inconsistency of DBF results is

likely to occur across pretest forms due to natural, random examinee-response variability. This is

an important point: Each pretest bundle � β  is a random variable, the variability of which is driven

by the randomness of examinee responses to test items. This fundamental assumption of

randomness � namely, that the latent-ability value does not deterministically control an

examinee�s response to an item � lies at the heart of IRT modeling.

In order to determine the overall DBF of each category (i.e., across pretests), the first

analysis, completed separately for each administration and group comparison, combined the

pretest-item category bundle � β  values across pretest forms for each category to arrive at a single

DBF index. In addition, by using the approximate normality of this index, we determined

(separately for each administration) which of these category indices were significantly different

from zero, thus indicating DBF for that particular category/administration/group-comparison

combination. (Combining over all pretests for a particular administration controls for the

problem of false positives that would occur if each category/pretest combination was analyzed

separately for DBF. It also greatly increases DBF power by forming much larger category-based

bundles to be analyzed for DBF. There are 15 categories, two administrations, and two

population comparisons, for a total of 60 such possible � β  indices.)

The formation of the above-described bundle � β  index (for each category and group

comparison combined over pretests within an administration) and a justification of its

approximate normal distribution are outlined as follows. Fix the test administration and the group

comparison. Let β ij  denote the estimated bundle DBF for category j items in Pretest i. Let nij

denote the number of items in bundle (i, j). Let nj = i� nij . Thus, nj  is the total number of
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category j items across all pretests of the administration. Let � β j = i  � � β ij . Then � β j /n j  is the

average � β  per item in category j, and as such is an indicator of the influence per typical item of

category j in creating DBF, in the presence of whatever secondary category-organizing principles

also influence the true bundle β  for the category j/administration/group-comparison

combination.

In the present situation, since examinees were in effect randomly assigned to one and

only one pretest, the β ij  were independent over all i for each fixed j. Thus, it was possible to

calculate the � S E( � β j /n j)  using the standard approach to computing the standard error of the sum

of independent observations. Since the β ij  over all i for a fixed j were independent and

approximately normally distributed, it follows from the central limit theorem that � β j /n j  was

approximately normal with mean i�  E � β ij / n j  and standard error (SE( � β ij ))
2 /n ji� . We

defined the normalized statistic Bj by dividing � β j /n j  by its estimated standard

error (SE( � β ij ))
2 /n ji� , with � S E( � β ij ) found in the usual way (see Shealy & Stout, 1993).

Under the null hypothesis of no DBF, each Bj  is distributed approximately standard

normal (mean 0, standard deviation 1). Thus, we were able to conduct a hypothesis test of

category DBF for each category/administration/group-comparison combination. Indeed, if DBF

were present, then the statistic � β j /n j  (the numerator of Bj ) would still be distributed

approximately normal but with a mean (not equal to zero) indicating the true average amount of

DIF per item for the bundle.

Table 3 presents the calculated � β j /n j  statistic and its observed level of significance

found for male-versus-female DBF; Table 4 provides parallel information for Black-versus-

White DBF. The observed level of significance (p-value) provided in Table 3 and Table 4 is the

hypothesis-testing, observed level of significance corresponding to the rejection region of the

null hypothesis of no DBF, for which the hypothesis-testing, null-hypothesis rejection-region

boundary is formed using the observed value � β j /n j . This observed level of significance is thus

a measure of the strength of evidence that the category displays DBF, with the usual

interpretations for 0.05 and 0.01. For example, a p-value of 0.006 provides strong evidence of

DBF, while a p-value of 0.169 provides very weak evidence of DBF. The number of items, nj ,
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that were classified in each category for each administration is included in the tables as well. The

groups favored by categories that demonstrated significant DBF (at the 0.05 level) are indicated

in the tables.

Table 3

DBF Analysis for Males-Versus-Females Comparison

First administration Second administration
Category � β j /n j p-value nj � β j /n j p-value nj

Algebra 0.000 0.960 166 -0.006**F 0.008 185

Calculation
Intensive

-0.009 0.267 17 0.005 0.450 26

Fractions With
Numbers

-0.006 0.354 23 0.031**M 0.000 21

Bar Graph 0.020**M 0.006 23 0.020**M 0.005 21

Line Graph � No items � 0.003 0.729 21

Pie Graph 0.008 0.222 28 0.020*M 0.015 17

Table 0.017*M 0.024 21 0.014 0.053 22

Applied Geometry
With Algebra

0.019**M 0.007 24 0.001 0.930 26

Geometry Without
Algebra

0.010 0.169 21 0.003 0.648 23

Geometry With
Memorized
Formulae

0.010 0.180 19 0.015*M 0.041 19

Number Theory 0.001 0.918 43 -0.006 0.127 69

Probability and
Statistics

0.017**M 0.000 75 -0.002 0.583 100

QCD 0.027**M 0.000 40 -0.001 0.822 38

Speededness 0.004 0.485 45 -0.007 0.121 56

Word Conversion 0.014*M 0.012 33 0.001 0.778 75
* significant at α  = 0.05 level; ** significant at α  = 0.01 level; F = favors females; M = favors males
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Table 4

DBF Analysis for Blacks-Versus-Whites Comparison

First administration Second administration
Category � β j /n j p-value nj � β j /n j p-value nj

Algebra -0.006 0.267 166 -0.003 0.603 185

Calculation
Intensive

-0.026 0.113 17 0.002 0.897 26

Fractions With
Numbers

-0.009 0.508 23 0.019 0.331 21

Bar Graph 0.060**W 0.000 23 0.034*W 0.043 21

Line Graph � No items � 0.054**W 0.005 21

Pie Graph 0.027 0.070 28 0.034*W 0.046 17

Table 0.030 0.052 21 0.042*W 0.040 22

Applied Geometry
With Algebra

0.026 0.066 24 -0.001 0.960 26

Geometry Without
Algebra

0.040**W 0.005 21 0.026 0.137 23

Geometry With
Memorized
Formulae

0.033*W 0.029 19 -0.007 0.696 19

Number Theory 0.003 0.737 43 -0.002 0.853 69

Probability and
Statistics

0.032**W 0.000 75 0.008 0.370 100

QCD -0.024*B 0.019 40 -0.028*B 0.031 38

Speededness 0.033**W 0.001 45 0.017 0.108 56

Word Conversion 0.036**W 0.001 33 0.033**W 0.000 75
* significant at α  = 0.05 level; ** significant at α  = 0.01 level; W = favors Whites; B = favors Blacks
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Looking at the results from Tables 3 and 4, there appear to be many inconsistencies

across administrations in the categories found to display significant DBF. However, recalling the

natural random variability of DBF indices, a category could in truth be a consistent DBF-

producing category, but due to the inherent random variability of examinee responses, would not

always be flagged in both administrations as such. A true inconsistency can occur when the

secondary dimensions present for a particular category change considerably across

administrations, either due to changes from within the bundle-defining category itself (internal

heterogeneity) or changes in the amount of overlap of the various secondary categories (external

heterogeneity). (These two possibilities are illustrated later in the section entitled, ANOVA-

SIBTEST Approach to Evaluating DBF.) Such differences can also occur when examinee

populations vary in their latent-ability distributions across administrations. This possibility was

explored but not judged to be a likely cause of inconsistent DBF results in this setting. Further, if

the mean item difficulty for a category changes considerably across administrations, this can

seriously influence the amount of true DBF present for that category.

In order to determine which categories produced true inconsistent DBF results across

administrations (that is, results that could not be explained by random examinee response

variation), the SIBTEST category-based bundle � β j /n j  pairs from the two administrations were

tested to determine if there was a significant difference in their theoretical distributions (in

essence, if there was a true difference in their mean values, E( � β j /n j )). Since the SIBTEST

administration-based bundle � β j /n j s divided by their estimated standard errors are distributed

approximately normal with standard deviation 1 and are independent across administrations,

testing for a difference in two E( � β j /n j )s from the same category but from different

administrations is easily accomplished by a standard normal distribution based Z-test. For the

males-versus-females comparison, the hypothesis test identified only three inconsistent

categories across the two administrations: Fractions With Numbers, QC D, and Probability and

Statistics. For the Whites-versus-Blacks comparison, the hypothesis test identified only two

inconsistent categories across the two administrations: Geometry With Memorized Formulae and

Probability and Statistics. (A method to determine the causes of these inconsistencies is

discussed later in the section entitled, ANOVA-SIBTEST Approach to Evaluating DBF.)

The above analysis shows that 11 categories out of 14 (for the males-versus-females
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comparison) and 12 categories out of 14 (for the Blacks-versus-Whites comparison) display no

evidence of inconsistency across administrations. In other words, in these 23 cases, no statistical

evidence suggests that the distributions of the SIBTEST bundle � β j /n j s are different for the two

test administrations. Thus, confidence intervals for the mean amount of category-based DIF per

item produced across administrations in these 23 consistent cases can be calculated by combining

the original SIBTEST bundle � β j /n j  values from both administrations. Two confidence intervals

also exist for the Line Graph category, but these are based only on the second administration.

Thus, overall there are a total of 25 confidence intervals.

Table 5 displays the 23 combined-administration confidence intervals, plus the two

confidence intervals for the Line Graph category. Each interval in Table 5 can be interpreted as

an estimate for a particular category of the average difference (across items of the category) in

the probabilities of getting an item correct between the reference and focal groups for matched

examinees. Thus, the confidence intervals are on the scale of the amount of DIF per item,

making them easy to interpret. A confidence interval that lies entirely to the right or entirely to

the left of zero indicates significant DBF for a particular category. If a category displays

significant DBF, the examinee group the category favors is shown in the table. For the categories

for which hypothesis-testing significance holds, the midpoint of the confidence interval is an

estimate of the effect size, which is an estimate of the average DIF per item.

As Table 5 shows for the males-versus-females comparison, seven categories show no

evidence of producing DBF and five categories show evidence of producing DBF in favor of

males. For the Blacks-versus-Whites comparison, five categories show no evidence of producing

DBF, one category shows evidence of producing DBF in favor of Blacks, and seven categories

show evidence of producing DBF in favor of Whites. It is fascinating � and potentially very

useful for future test development efforts � to evaluate from the content/conceptual perspective

which of these categories favor males or females and/or Blacks or Whites. The estimated amount

of DIF per item (often called the effect size) for each DBF-producing category is of practical

importance. This estimate, multiplied by the number of items of the category typically occurring

for an administration, yields an estimate of the amount of DBF expected for the category on the

total test-score scale.
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Table 5

Confidence Intervals for Amount of DIF per Item

Category
DIF for males-versus- females

(Estimate ± � S E )
DIF for Blacks-versus-Whites

(Estimate ± � S E )
Algebra -0.0033 ± 0.0035 -0.0046 ± 0.0083

Calculation
Intensive

-0.0008 ± 0.0094 -0.0093 ± 0.0218

Fractions With
Numbers

Not consistent 0.0040 ± 0.0229

Bar Graph 0.0196 ± 0.0097M 0.0473 ± 0.0211W

Line Graph 0.0026 ± 0.0148 0.0539 ± 0.0375W

Pie Graph 0.0126 ± 0.0126M 0.0294 ± 0.0220W

Table 0.0152 ± 0.0101M 0.0362 ± 0.0253W

Applied Geometry
With Algebra

0.0092 ± 0.0090M 0.0122 ± 0.0211

Geometry Without
Algebra

0.0062 ± 0.0095 0.0323 ± 0.0220W

Geometry With
Memorized
Formulae

0.0126 ± 0.0104M Not consistent

Number Theory -0.0034 ± 0.0061 0.0002 ± 0.0140

Probability and
Statistics

Not consistent Not consistent

QCD Not consistent -0.0264 ± 0.0164B

Speededness -0.0022 ± 0.0066 0.0241 ± 0.0144W

Word Conversion 0.0050 ± 0.0060 0.0339 ± 0.0132W

M = significant DIF in favor of males; W = significant DIF in favor of whites; B = significant DIF in favor of blacks

These results should be highly useful in understanding DBF on the GRE quantitative test.

One of the more interesting results from this analysis is that QCD items are highly DBF-

producing in favor of blacks. While the content/cognitive reason behind this result warrants

further study, from the quantitative perspective, Table 5 captures the core results of our study as

it applies to the GRE quantitative and Mathematical Reasoning tests.

Although these categories are designed to be relatively distinct and homogeneous, the
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estimated DIF per item for each category must be viewed in context. The average bundle � β  per

item for a category is the result of averaging over all of the secondary dimensional influences on

item performance for all the items of the category. Such possible influences include not only the

other 14 defined categories, but also conceptual influences on item performance not explicitly

identified as one of our operational categories. Influences on items from outside the operational

category-constructs must be expected, since no reasonable item has only one single performance-

controlling construct, and the other bundle-organizing categories surely do not include all such

secondary dimensional influences. In the next section we attempt to explain the five

inconsistencies found across test administrations that were mentioned earlier.

ANOVA-SIBTEST Approach to Evaluating DBF

For relatively dimensionally homogeneous categories, the bundle SIBTEST method

described earlier provides a complete and useful analysis of which operational categories

produce DBF and their DBF effect sizes. Such an analysis allows investigators to reliably and

validly assess the causes of DBF based on the conceptual nature of the categories. However,

since our operational categories were constructed to allow for some overlap, the SIBTEST

bundle analysis sometimes cannot provide a complete picture of either the DBF present in a

category or its conceptual cause. Closely related, the influence of secondary overlapping

categories is a likely cause of the statistically significant inconsistencies found between

administrations for the five combinations of categories and group comparisons highlighted

earlier. By contrast, we have been able to successfully analyze the 23 other category/group

comparisons, most likely because their categories were sufficiently homogeneous.

In general, inconsistency across administrations for a category in SIBTEST DBF results

can come from two possible sources: a) the influence of other secondary overlapping categories

from the operational list of categories, or b) heterogeneity within the inconsistent category even

when there is no secondary category overlap. These two sources affect the DBF results in the

same manner. For either source, the conceptual characteristics influencing differential examinee

performance differ from item to item within the category in a way that can cause DBF

inconsistencies across administrations. For example, if these secondary dimensions occur in

different concentrations in same-category bundles from two different administrations, the DBF

results across administrations for the bundles can be inconsistent, even though the bundles
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represent the same category-defining principle.

To further illustrate and explain the problematic nature of within-category heterogeneity

for DBF analyses, consider a hypothetical case of heterogeneity within a category called

Geometry. Its items are dichotomized according to a split in one aspect of their cognitive nature:

items requiring the interpretation of a geometric figure and items that do not. Further, suppose

these two subcategory item types display equal amounts of DIF in favor of males and females,

respectively. Finally, suppose the concentration of these item types is equal in the first

administration, but in the second administration, the ratio of the item concentration of the first

type to the second type is 3 to 1. Thus, due to the different concentration of items between

administrations, a statistical analysis of the Geometry category will likely result in two

inconsistent results: For the first administration, our conclusion would be that Geometry is a

DBF-neutral category, and for the second administration, our conclusion would be that Geometry

is a DBF-producing category in favor of males. This is an example of internal category

heterogeneity.

The same example can be modified to illustrate the influence of secondary overlapping

categories on the DBF results for a particular bundle-defining category. Suppose we have two

final categories called Geometry and Algebra and that we are analyzing the Geometry category

for DBF. Suppose pure geometry items are DIF-producing in favor of males, and pure algebra

items are DIF-producing in favor of females. Further, suppose that on the first administration, the

Algebra category intersects half of the Geometry category items (items in the intersection have

both a geometry and an algebra component and hence are assigned to both categories), but on the

second administration the Algebra category intersects only 20% of the Geometry items. Due to

the change in the concentration of the overlapping Algebra category, the DBF analysis of the

Geometry category will likely result in inconsistent results, with the second administration

showing significantly more DBF in favor of males than the first administration. Here the

category heterogeneity is caused by a change in secondary overlapping categories across

administrations.

Since, excluding Probability and Statistics, all 15 final categories were relatively

dimensionally homogeneous according to our h-index-based hypothesis-testing approach, we

conjectured that the bundle SIBTEST inconsistencies across administrations for Fractions With

Numbers and QCD for the males-versus-females comparison and Geometry With Memorized
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Formulae for the Blacks-versus-Whites comparison were likely due to changes in the

concentration of the secondary overlapping categories across administrations. However, since

Probability and Statistics was judged statistically to be internally heterogeneous, another possible

cause for the two inconsistencies involving this category was the heterogeneity of the category

itself.

To explore whether variations in the influence of secondary overlapping categories were

the cause of the inconsistencies involving the five inconsistent bundle/group-comparison

combinations, an ANOVA procedure was developed. The procedure was applied separately to

each category to adjust the DIF statistic � β  of each item in the category for the possible DBF

influence of its secondary overlapping categories. The ANOVA model was used to form a

hypothesis test of whether the inconsistencies between administrations found in the SIBTEST

DBF results were due to the influence of variations in secondary overlapping categories or to

some other cause � for example, the internal heterogeneity of an individual category, such as

Probability and Statistics.

One potential statistical problem with this particular ANOVA analysis is that ANOVA

analysis presumes independence of all dependent-variable observations (the item � β s). Since DIF
� β  statistics for items from the same pretest form (all such pretest items being taken by the same

subset of the examinee population) are potentially probabilistically dependent on one another,

independence of all observations could seriously fail in our data set. However, a comparison of

the calculated sample � β  variance for the items in the same pretest with the expected variance

under the assumption of item � β  independence revealed only a slight discrepancy for the various

pretests. This indicated that the correlations of the DIF item � β s for different item pairs from the

same pretest were on average close to zero. Since the SIBTEST item � β  statistics were distributed

approximately normal (Shealy & Stout, 1993), a near-zero correlation between two such

statistics indicates approximate independence. Thus, although strict theoretical independence

between item � β s was not logically obtained, based on empirical evidence the item � β s could be

considered to be approximately independent, and hence, the usual ANOVA analysis could be

carried out.
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Determining the Causes of Inconsistencies Across Administrations

Since our main goal in using the ANOVA model was to determine the causes for the

inconsistencies observed in the SIBTEST DBF results, our first ANOVA analysis was limited to

the study of the five inconsistent category/group-comparison combinations mentioned earlier �

Fractions With Numbers, QCD, and Probability and Statistics for the males-versus-females

comparison and Geometry With Memorized Formulae and Probability and Statistics for the

Blacks-versus-Whites comparison. To illustrate the ANOVA model that was developed for each

of the five inconsistent categories, we use the QCD category for the males-versus-females

comparison as an example. The other four category/group-comparison combinations were

studied in a similar manner.

As Table 3 and Table 4 show, 40 items from the first administration and 38 items from

the second administration were classified in the QCD category. A single QCD ANOVA model

was defined to include both administrations. This ANOVA model used the individual, item

SIBTEST � β s for each of the 78 QCD items as the dependent variable for the model. As such, the

dependent variable in the ANOVA model served as a measure of the gender-based DIF

associated with each of the QCD items.

The independent variables in the ANOVA model were a series of indicator variables for

the secondary overlapping categories � coded 1 when the item was influenced by a particular

secondary overlapping category and coded 0 when it was not. Overlapping categories were

included in an ANOVA model if they overlapped with at least 10% of the items in the studied

category from either the first or second administration. In other words, all other categories

present in four or more QCD items either from the first or second administration were included

as indicator variables in the ANOVA model. In this manner, the Word Conversion, Algebra,

Number Theory, and Probability and Statistics categories were established as indicator variables.

Finally, an additional indicator variable, Administration � representing whether an item

belonged to the first or second administration � was added to the model.

Each factor of the ANOVA model occurs at two levels. The QCD ANOVA model for

each QCD item can be written structurally in the following way:

� β = b0 + b1(Word conversion) +  b2(Algebra) +b3(Number theory) 
+b4(Probability & statistics) +b5 (Administration)+e

(2)
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Here, e denotes random error, the variables in parentheses are the indicator variables, and

b0, b1 ... b5  are the unknown regression coefficients of the model.

In developing this ANOVA model, the SIBTEST item statistic � β  was decomposed into

three main sources of DIF:

� the amount of DIF due purely to the bundle-defining QCD category itself and
captured by the intercept of the model (b0)

� the amount of DIF due to each secondary overlapping category and captured by each
category coefficient in the model (b1through b4)

� the possible change in the amount of DIF between test administrations and captured
by the Administration coefficient in the model (b5)

If the intercept of this model was found to be significantly different from zero, then items in the

QCD category were determined to display a significant amount of DIF after adjusting for the

influence of overlapping categories and the influence of Administration. Thus, the intercept

denotes the amount of DBF associated with the pure, defining aspect of the category, as

expressed by the definition of the category found in Table 2. If one of the coefficients

corresponding to the four overlapping categories was significantly different from zero, then the

amount of DIF for QCD items that also belong to this overlapping category was determined to be

significantly different than the amount of DIF occurring in QCD items not belonging to the

overlapping category. Finally, if the coefficient corresponding to the Administration variable was

significantly different from zero, then the amount of DIF for the QCD items between

administrations was determined to be significantly different, even after adjusting for the effects

of the various overlapping categories. In this case, secondary categories could not explain the

observed inconsistency across administrations. When our focus was on whether there was an

Administration effect (an inconsistency across administrations), the role of the other parameters

of the model was to adjust for various possible covariates. Including these covariates in the

model produced a model with good power to detect an Administration effect.

Using the statistical software package, SAS® (SAS Institute), and the method described

above, the ANOVA models for each of the five inconsistent categories were estimated. Since the

main focus was to determine whether the observed differences in the amount of DIF between

administrations were statistically significant, the significance of the coefficient (that is, the
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coefficient was statistically judged to be nonzero) corresponding to the Administration variable

was tested at the α  = 0.05 hypothesis-testing level of significance for each of the five ANOVA

models. For three category/group-comparison combinations � Fractions with Numbers for

males versus females and Probability and Statistics and Geometry With Memorized Formula for

Blacks-versus-Whites � the coefficient corresponding to the Administration variable was not

found to be significantly different from zero. This SIBTEST ANOVA finding implies that, once

the influence of the other secondary overlapping categories was accounted for, there was no

evidence of a statistically significant difference in the amount of DIF between administrations

for these three category/group-comparison combinations. In this manner, the ANOVA method

explained the cause of the inconsistent SIBTEST DBF results for three out of the five

inconsistent category/group-comparison combinations, namely secondary overlapping

categories. Interestingly, for the Probability and Statistics/Blacks-versus-Whites combination,

the internal heterogeneity of the category was thus not the identified source of the observed

inconsistency (although it could also be contributing).

However, for the other two category/group-comparison combinations � QCD and

Probability and Statistics for males versus females � the coefficient corresponding to the

Administration variable was significantly different from zero in both cases. This SIBTEST

ANOVA finding implies that the difference in the amount of DBF between administrations for

these two category/group-comparison combinations was statistically significant, after adjusting

for the influence of overlapping categories and allowing for natural, random examinee response

fluctuations. Thus, there must be other unidentified influences that account for the

inconsistencies in the observed � β  s across administrations for the Probability and Statistics and

QCD categories for the males-versus-females comparison.

Throughout our analyses, the Probability and Statistics category was determined to lack

internal dimensional homogeneity. (We examine the heterogeneous nature of this category more

closely in a later section, Impact Analysis of Final Categories.) Thus, we have always suspected

the DBF results for this category might not be consistent across test administrations in part due to

this within-category heterogeneity. The QCD category, by its definition (as noted earlier, items

are never defined as just belonging in the QCD category alone), can be highly influenced by

other secondary categories. Probability and Statistics was included in the QCD ANOVA model

because it occurs in more than 10% of the QCD items in both administrations. Thus, a possible
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cause of the inconsistency of the DBF results for the QCD category for males versus females

could be internal changes between administrations in the composition of the heterogeneous

overlapping category, Probability and Statistics. This possible explanation is somewhat subtle:

The possible cause is not variation in the amount of Probability and Statistics item overlap with

QCD across administrations (such variation in overlap of secondary categories as was found to

be the cause for the three cases above), but could be variation in the internal composition across

administrations of the overlapping and heterogeneous Probability and Statistics category.

Using the ANOVA model for the QCD category described above, we were able to test

this theory by splitting the Probability and Statistics indicator variable into two independent

indicator variables according to the test administration of the Probability and Statistics items. In

effect, using two variables for the Probability and Statistics category allowed the category to

literally function as a different category in the each of the two administrations, even though it

had the same name. In this manner, the modified QCD ANOVA model was able to determine

whether the differences across administrations in the internal composition of the Probability and

Statistics category affected the amount of DIF that was present in the QCD items. Analyzing this

new ANOVA model for the QCD category, the coefficient corresponding to the Administration

variable was no longer statistically significantly different from zero. This implies that the

difference in the amount of DBF between administrations for the QCD category was explainable

by the internally heterogeneous nature of the secondary overlapping Probability and Statistics

category. Thus, analysis of our modified ANOVA model explained the cause of the inconsistent

SIBTEST DBF results for the QCD category.

By using the ANOVA approach to study category-based item DIF, causes for four out of

the five observed category/group-comparison inconsistencies were found � three due to

variation in secondary overlapping categories across administrations and one due to variation in

the internal composition of a secondary overlapping category across administrations. The fact

that 23 of the 28 category/group-comparison combinations were consistent according to our

hypothesis-testing approach, described earlier, illustrates that the SIBTEST bundle analysis

usually produces consistent and useful results for carefully constructed and relatively

homogenous categories, even when some secondary category overlap is present.
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SIBTEST ANOVA Analysis of All 15 Operational Categories

While our primary goal in developing the ANOVA method described above was to

determine whether changes in overlapping secondary categories were responsible for the five

inconsistent category-based results across administrations found in the SIBTEST DBF analysis,

the method can be slightly modified and applied separately to every one of the 15 operational

categories to form an overlapping, category-based, decompositional analysis of the amount of

DBF present in each category, for each group comparison and for either each administration

separately or both administrations combined. While a thorough category-based DBF analysis has

already been conducted using the SIBTEST bundle method, the ANOVA method can sometimes

be of further value because it enables us to study the DIF for an item in a particular category

decomposed into the influence of that category itself and the influence of other secondary

overlapping categories. By thus controlling for the influence of the secondary overlapping

categories, the ANOVA method can then assess the �true� DBF associated with each category-

organizing principle for each group-comparison/administration combination.

If the combined influence of the overlapping categories on item-level DIF is small, then

the categories flagged using the ANOVA method (categories with intercepts that were judged to

be significantly different from zero) should be similar to those found by the SIBTEST bundle

method (provided both methods are equally statistically powerful!). However, if the combined

influence of secondary overlapping categories on DBF is sizeable, the categories flagged using

the ANOVA method will likely often vary from the categories flagged using the SIBTEST

bundle analysis. By combining the two analyses, the DBF associated with each category can be

analyzed both in the context of other secondary dimensional category influences (by way of the

SIBTEST bundle analyses) and with other category influences separated out (by way of the

SIBTEST ANOVA method). We stress that for relatively statistically homogeneous categories,

this context issue is largely inconsequential because the influence of overlapping categories at

the bundle level is minor.

To complete the analyses, we used the SIBTEST ANOVA method to assess the presence

of DBF for each final category (judged by whether the category intercept was significantly

different from zero) for each administration separately. Since there were two administrations, 15

categories, and two types of DIF studied (Blacks-versus-Whites and males-versus-females), and

the two ANOVA models for the category Line Graph from the first administration were not
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calculated because of the lack of such items, 58 ANOVA models were each statistically

analyzed. The components of the ANOVA models were exactly the same as those described for

the SIBTEST bundle method, except for the lack of an Administration indicator variable. (Since

only items from one administration were used for each analysis, the Administration variable was

superfluous.) Thus, each ANOVA model included an intercept and indicator variables for all

categories that overlapped with at least 10% of the items for the category modeled. If the

intercept of a particular ANOVA model was found to be significantly different from zero, then

items in this category were determined to display a significant amount of DBF even after

adjusting for the influence of overlapping categories and the natural randomness of the item � β s.

If one of the coefficients corresponding to the overlapping categories was found to be

significantly different from zero, then the amount of DIF for items in this category that also

belonged to the overlapping category was determined to be significantly different than the

amount of DIF occurring for items in this category that do not belong to the overlapping

category.

For the first and second administrations, respectively, Table 6 and Table 7 display

categories with significant intercepts in their ANOVA models for each group comparison. In

order to provide a comparison of the two approaches, the categories found to produce significant

DBF from the earlier SIBTEST DBF bundle analyses are also included in the tables. (See Tables

3 and 4 for the original SIBTEST DBF results.) Inconsistencies between ANOVA and SIBTEST

bundle results are denoted by an asterisk. Each table includes a list of any statistically significant

overlapping categories (as determined from the ANOVA models) for each of the categories

included in that table. After each such category, the sign of its coefficient is given, with a plus-

sign indicating a contribution to DBF against the focal group (females or Blacks) and a minus-

sign indicating a contribution to DBF against the reference group (males or Whites). When an

inconsistency between the ANOVA and SIBTEST bundle results is explainable by the presence

of one or more significant overlapping categories, as shown by the ANOVA analysis, this is also

indicated in the tables.
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Table 6

ANOVA Results From the First Administration*

� DBF for males versus females �

ANOVA results SIBTEST DBF results
Applied Geometry With Algebra M Applied Geometry With Algebra M
QCD M QCD M
Bar Graph M Bar Graph M
Table M Table M

Probability and Statistics MProbability and Statistics M
Word Conversion MD

Significant overlapping categories (α  = .05): None

� DBF for Blacks versus Whites �

ANOVA results SIBTEST DBF results
Geometry Without Algebra W Geometry Without Algebra W
Bar Graph W Bar Graph W
Probability and Statistics W Probability and Statistics W
Table W Table W
Algebra BDE QCD BDE

Speededness WD

Word Conversion WD
Number Theory WDE

Geometry With Memorized Formulae WD

Significant overlapping categories (α  = .05): Algebra (-) with Word Conversion (+)
QCD (-) with Algebra (+)
Number Theory (+) with QCD (-)

* Categories with significant DBF (α  = .05) only
M = favors males, F = favors females
B = favors Blacks, W = favors Whites
D = discrepancy between ANOVA and SIBTEST results
E = Inconsistency explained by overlapping categories
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Table 7

ANOVA Results From the Second Administration*

� DBF for males versus females �

ANOVA results SIBTEST DBF results
Fractions With Numbers M Fractions With Numbers M
Table MDE Algebra FDE

Geometry With Memorized Formulae MD

Bar Graph MD

Pie Graph MD

Significant overlapping categories (α  = .05): Algebra (-) with Bar Graph (+)
Table (+) with Probability and Statistics (-) and

Algebra (-)

� DBF for Blacks versus Whites �
ANOVA results SIBTEST DBF results
Algebra BDE QCD BDE

Word Conversion W Word Conversion W
Line Graph WD

Bar Graph WD

Pie Graph WD

Table WD

Significant overlapping categories (α  = .05): Algebra (-) with Speededness (+) and Word
Conversion (+)

QCD (-) with Word Conversion (+)
* Categories with significant DBF (α  = .05) only
M = favors males, F = favors females
B = favors Blacks, W = favors Whites
D = discrepancy between ANOVA and SIBTEST results
E = Inconsistency explained by overlapping categories

Over both test administrations, a total of six inconsistencies were found between the

SIBTEST ANOVA and SIBTEST DBF bundle results for the males-versus-females comparison,

and a total of 12 inconsistencies were found for the Blacks-versus-Whites comparison. Two out

of the six inconsistencies for the males-versus-females comparison are explained by the presence

of significant overlapping categories (with the coefficients having the appropriate signs), while

five out of the 12 inconsistencies for the Blacks-versus-Whites comparison are similarly

explained. Thus, the tables point to a total of seven explained inconsistencies.

In each of the remaining 11 unexplained cases of inconsistency, the category was
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determined to be significantly DBF-producing using the SIBTEST DBF bundle analysis, but was

not determined to be significantly DBF-producing using the SIBTEST ANOVA method. For

these 11 cases, the likely cause of inconsistency was a lack of statistical power on the part of the

SIBTEST ANOVA method because category sizes were small. The power of a statistical test is

defined as the probability of correctly rejecting a false null hypothesis. As applied to our

analysis, the power of one of our statistical tests was the probability of correctly rejecting the

null hypothesis of zero DBF for a category (correctly concluding the category is significantly

DIF-producing).

To illustrate the difference in power between the SIBTEST DBF bundle and ANOVA

procedures, consider a DBF analysis of a category-based bundle of 20 items. In the SIBTEST

bundle-DBF analysis, all 20 items would be used to estimate the average amount of DIF per item

for the category. However, in the SIBTEST ANOVA analysis, the same 20 items would not only

be used to estimate the intercept, but also to estimate each of the coefficients corresponding to

the secondary overlapping categories of the model. Furthermore, in our example, the estimation

of the coefficients for the overlapping categories would be accomplished using a very small

number of overlapping items per overlapping category � as few as, and likely not much more

than, two items. Thus, when the category being modeled is small, our statistical ability to

estimate and test the influence of an overlapping category on the data would be severally limited.

With only two exceptions (Speededness and Word Conversion), each of the categories

determined to be significantly DBF-producing using the SIBTEST DBF method, but determined

not to be significantly DBF-producing using the ANOVA method, contained fewer than 25

items. Therefore, the fairly sizeable number of inconsistencies found between the two category-

based DBF methods appears to be almost entirely explained by a lack of power on the part of the

SIBTEST ANOVA method for small categories.

The Heterogeneity of the Probability and Statistics Category

Based on the SIBTEST bundle analysis, the Probability and Statistics category produced

inconsistent results with regard to DBF across the two test administrations for both group

comparisons. During the original formation of the categories, Probability and Statistics was

chosen more to provide an exhaustive set of categories (recall its definition in Table 2) than for

the homogeneous nature of its items. Hence, one likely explanation for the inconsistent DBF

results is internal heterogeneity within the category, especially for the unexplained males-versus-
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females inconsistency.

In order to examine the internal heterogeneity of the category and thereby help explain

the inconsistent DBF results, the Probability and Statistics category was split into smaller,

content-specific, and disjoint (i.e., mutually exclusive) microcategories. The microcategories

were formed using internal ETS GRE-quantitative content classifications that, by design, are

distinct and extremely content-specific. The resulting nine micro-categories that were classified

as belonging to the Probability and Statistics category are:

� Combinatorics

� Probability

� Arithmetic Mean

� Weighted Mean

� Median

� Mean/Median Comparison

� Range

� Standard Deviation

� Percentile

Focusing on the males-versus-females comparison and using the SIBTEST bundle

method, the overall amount of DBF present in each of the microcategories was then calculated

for each administration. As a result, two of the nine microcategories were found to be

significantly DBF-producing in favor of males: Probability and Standard Deviation (Probability

in both administrations and Standard Deviation in the first administration � the only

administration in which more than one item involved standard deviations). In addition, two

microcategories were found to be significantly DBF-producing in favor of females: Median and

Median/Mean Comparison (both categories in both administrations).

For the first test administration, out of a total of 80 items classified into the nine

microcategories, 21 items were classified as Probability, eight items were classified as Standard

Deviation, nine items were classified as Median, and seven items were classified as

Median/Mean Comparison. For the second test administration, again out of 80 items, 24 items
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were classified as Probability, one item was classified as Standard Deviation, nine items were

classified as Median, and six items were classified as Median/Mean Comparison. The relative

influence of three of these microcategories � Probability, Median, and Median/Mean

Comparison � was approximately the same for both administrations. However, the relative

influence of the Standard Deviation microcategory was considerably greater in the first

administration. In addition, the SIBTEST bundle analysis of the Standard Deviation

microcategory found this category to be extremely DBF-producing in favor of males, with an

observed significance level (p-value) of 0.0001 in the first test administration. Thus, for the

males-versus-females comparison, the DBF results for the Probability and Statistics category

should have been significantly affected by the change in the composition of the items between

the two administrations. We thus have an explanation for the category�s only remaining

unexplained inconsistency between administrations � namely, the internal heterogeneity of the

Probability and Statistics category.

From our analysis, we have shown that the Probability and Statistics category included

several, smaller and more specific cognitive constructs that influenced examinee performance

differently. Four of these cognitive constructs were determined to have a significant amount of

DBF potential associated with them � two in favor of males and two in favor of females. The

difference in the DBF results for the males-versus-females comparison across administrations

was very likely due to the relative influence of the Standard Deviation microcategory. The subtle

way in which the Standard Deviation microcategory became an important determinant of DBF

for the much broader Probability and Statistics category seems instructive.

Impact Analysis of Final Categories

Impact was defined earlier as the average score difference on an item or group of items

between two distinct groups of examinees without controlling for examinee ability. By contrast,

SIBTEST measures the average score difference on an item or group of items between two

distinct groups of examinees who are matched on some valid ability scale, such as their score on

the operational items used for our GRE quantitative analysis. Using our working assumption that

this test score provides a reasonably equitable means of assessing examinees on the GRE

quantitative test, then we have a procedure for finding category-based bundles that display

statistically significant DBF for examinees matched on a valid indicator (operational items test

score) of the dominant construct the test is trying to measure (e.g., quantitative reasoning). By
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contrast, category-based bundle impact measures the difference in score performance on that

bundle between two groups with no attempt to match examinees in any way �particularly not in

a way that is correlated with what the GRE quantitative measures. Since impact describes

directly observable group-based score difference on category bundles, it is also vital to consider

impact, in addition to DBF, when designing and evaluating a test for fairness and influence on

different examinee groups.

To determine the amount of impact associated with each category for each

administration, the impact of each individual item was calculated by taking the difference in the

proportion of examinees that answered the item correctly from the two groups. Then, given each

individual item-impact value, the total impact of a category bundle was calculated by taking the

sum of the item-impact values within each category over all pretests. Finally, the mean of the

item-impact values was calculated for each administration and category. Table 8 provides the

final average impact per item for each category and each administration for the males-versus-

females comparison, and in Table 9 shows parallel findings for the Whites-versus-Blacks

comparison. In both tables, positive values indicate impact against the focal group (females or

Blacks). In addition to Table 5, Table 8 and Table 9 are also potentially very useful for future

efforts to improve the equity of the GRE quantitative and Mathematical Reasoning examinations.

The impact per item values for all categories, both administrations, and both examinee

population group-comparisons are positive and sizeable. This reflects what has been widely

observed about score distributions for these groups on the GRE quantitative test . It is certainly

worth noting that no attempt was made in this study to investigate possible covariates � such as

the number of engineering, science, and mathematics courses examinees had taken, grades they

received in such courses, their planned career paths, and so on. For example, it is surely the case

that the proportion of men in technical career paths is higher than that of women among those

who took the GRE quantitative exam on these two administrations.
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Table 8

Impact Values for Males Versus Females

Category First administration
(impact per item)

Second administration
(impact per item)

Algebra 0.0888 0.0865
Calculation Intensive 0.1080 0.0819
Fractions With Numbers 0.0940 0.0749
Line Graph No Items 0.0867
Bar Graph 0.1171 0.0935
Pie Graph 0.0804 0.1005
Table 0.0795 0.0799
Applied Geometry With Algebra 0.0813 0.0741
Geometry Without Algebra 0.1124 0.0804
Geometry With Memorized Formulae 0.1007 0.0850
Number Theory 0.0931 0.0834
Probability and Statistics 0.0831 0.0869
QCD 0.0928 0.0762
Speededness 0.0870 0.0932
Word Conversion 0.1010 0.0907
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Table 9

Impact Values for Blacks Versus Whites

Category First administration
(impact per item)

Second administration
(impact per item)

Algebra 0.1154 0.1202
Calculation Intensive 0.1369 0.0868
Fractions With Numbers 0.1336 0.0988
Line Graph No Items 0.1156
Bar Graph 0.1245 0.1381
Pie Graph 0.0956 0.1464
Table 0.1207 0.1169
Applied Geometry With Algebra 0.1310 0.1184
Geometry Without Algebra 0.1319 0.1097
Geometry With Memorized Formulae 0.1299 0.1364
Number Theory 0.1194 0.1212
Probability and Statistics 0.1060 0.1191
QCD 0.1230 0.1186
Speededness 0.1208 0.1326
Word Conversion 0.1317 0.1309

Evaluating the DIF Effects of Studied Latent Dimensions: An Experimental Approach

One advantage of the SIBTEST bundle detection method is its close connection to the

Roussos/Stout multidimensional DBF model in which the contribution of latent conceptually

organized dimensions to DBF is postulated (Roussos & Stout, 1996). Since the � β  bundle value

for a category that is designed to be dimensionally homogeneous is easy to compute because it is

the sum of the item � β  values for this bundle, SIBTEST bundle � β  values are well suited for

quantifying the effects of dimensions contributing to DBF and are also easy to obtain. The

ANOVA approach, which appears to have some capacity to assess the relative contributions of

category-produced latent dimensions to DBF, should become more statistically powerful and

informative when pretest items are intentionally designed to test the effects of various targeted

dimensions, as defined by a variety of conceptual organizing principles (such as item content,

item format, position of the item on the test, cognitive characteristics, and so on).

For example, in evaluating the relative contributions of two dimensions (say, dimensions
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A and B) defined at two levels that indicate the absence or presence of the dimensions

influencing examinee performance (say A0, A1 and B0, B1), we may construct a factorial design

involving four item variations that are cognitively/conceptually the same in all respects except

for their levels on A and B. The advantage of this approach is that by controlling for other

sources of potential DBF by keeping the core of the item constant, we can more effectively

isolate and evaluate the effects of A and B with better statistical power of detection. Using such

an experimental approach, confirmation of dimensions suspected as contributing to DBF (along

the lines of the Roussos & Stout latent dimensionality approach to DBF, 1996) would seemingly

be more accurately tested in the experimental context, rather than depending on the observational

data approach presented above.

Luckily, sets of items that appear to satisfy such an experimental study design actually

did occur among the pretest items on the second administration. Such items are said to constitute

an item group, which is defined as a group of items that all possess the same core, but are

embellished differently by varying certain factors. For example, Figure 2 displays a core word

problem involving the construction of an algebraic equation for determining the cost of various

types of purchases. Variants of this item � which had been created for the GRE quantitative test

by modifying the core with respect to a) the object being purchased, b) the gender of the

purchaser, c) the concrete (numeric) versus abstract (algebraic) nature of the problem, and d)

whether the item appeared in �long form� or �short form� � were present across pretest

administrations (although all 16 combinations did not occur).

A SIBTEST ANOVA was conducted for this item group to determine the effect on DIF

of changes in a) the type of product sold (whether a book or a drink), b) whether the person in

the question was identified as a manager or not, c) the type of question form (long versus short),

and d) the variable type (numeric or algebraic) for males and females, as measured by item � β . A

Scheffe ANOVA test for the comparison of adjusted means indicated there is a significant

difference in DIF at the α  = .05 level between questions with a numeric value (item � β  = �

0.016) and questions with an algebraic variable instead (item � β  = � 0.050). There were no other

observed significant differences, although the power of this study may be low for small

differences.
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Item Group 1
Short form Long form

A refreshment stand sells small boxes of juice
for $0.60 each and large boxes of juice of
$0.90 each. Jane bought T large boxes of juice.
If she spent the same amount of money on
small boxes as on large boxes of juice, how
many small boxes of juice did Jane buy?

A refreshment stand sold juice yesterday for
$0.60 a box and sold 150 of the T boxes they
had on hand. Today the manager wants the
remaining boxes to bring in the same total as
the juice sold yesterday. At what price, in
dollars per box, must the manager sell the
remaining boxes of juice?

The underlined words may be changed to any of the following to produce other item variants:
� juice: notebooks, textbooks, sodas
� Jane, manager: Marie (no status indicator)
� T: 8

Figure 2. Short-form and long-form variants of a GRE quantitative item.

Figure 3 presents a second item group that was analyzed (again, not all 16 combinations

of possible item variations occurred). A SIBTEST ANOVA was performed to determine the

effect on DIF (measured by � β ) of changes in a) mode of transportation, b) male name versus

female name, c) type of question form (long versus short), and d) the variable type (numeric or

algebraic) for males and females. A Scheffe ANOVA test for the comparison of adjusted means

indicated there is significant difference in DIF (α  = .05) between questions with male names

(item � β  = 0.040, as measured by the estimated intercept) and questions without male names

(item � β  = � 0.0110, as measured by the estimated intercept) � an interesting finding. No other

significant differences were observed, although the power of this study is likely low for small

differences due to the limited number of items available for analysis.

While the specific results of the above 1995-1996 GRE-quantitative item groups do not

seem widely applicable, the methodology used to isolate the influence of various conceptual

factors on DBF can be applied to many settings. In fact, see Bolt (2000), for a much more

extensive study of this experimental item-based approach using the SIBTEST bundle method.

Interestingly, our analysis of the two item groups above suggests that relatively noncognitive

dimensions (e.g., male versus female names) can influence DBF, as has been suggested by many

researchers.

www.ztcprep.com



61

Item Group 2

Short form Long form
Joe bikes at a constant speed of 12 miles per
hour and Pat bikes at a constant speed of 20
miles per hour. How many hours does it take
Joe to travel the distance that Pat travels in 6
hours?

Joe bikes at a speed of 9 miles per hour on a
certain bike trail for 4 hours and then turns
around for the return trip along the same trail.
He scheduled a total of 6 hours biking for the
complete trip. If Joe is to complete his trip
exactly on schedule, at what speed, in miles per
hour, must he bike for the return trip?

The underlined words may be changed to any of the following to produce other item variants:
� Joe: John, Juanita, Joe
� Pat: Antonia, Marie
� bikes: takes a bus, drives a car, jogs

Figure 3. Short-form and long-form variants of a second GRE quantitative item.

Discussion and Conclusions

By further developing and using the multidimensional DBF paradigm of Roussos and

Stout (1996), we achieved our central goal of discovering and assessing conceptually-caused

differences in performance on the GRE quantitative test between males and females and also

between Blacks and Whites. The DBF paradigm calls first for the development of conceptually

meaningful and statistically discernable latent dimensions (conceptually based categories) that

influence examinee performance on items. As detailed earlier, a preliminary set of 26 categories

of GRE-quantitative items was first developed from three sources. These categories were then

designed to be conceptually meaningful and exhaustive. By applying two additional criteria �

(a) relative, within-category dimensional homogeneity and (b) approximate independence or

negative association � to achieve relative distinctiveness between all pairs of categories, the 26

preliminary categories were refined to a final set of 15 operational categories. In the statistical

analysis of internal homogeneity of these final categories, the QCD category was found to be

highly dimensionally homogeneous, a finding that implies the existence of a cognitively unique,

strongly influential, and possibly largely construct-irrelevant common dimension to all QCD

items.

An analysis of the amount of DBF for each category suggested several possible

inconsistencies in DBF results across the two administrations studied. However, using a
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hypothesis-testing approach, only five out of 28 categories were found to produce statistically

significant inconsistencies between administrations. For each of the 23 consistent

category/group-comparison combinations, confidence intervals for the amount of category-based

DIF per item � calculated for the combined administrations � showed that five categories were

significantly DBF-producing in favor of males, seven categories were significantly DBF-

producing in favor of Whites, and one category was significantly DBF-producing in favor of

Blacks. Concerning the issue of the equity of the GRE quantitative test and the proposed GRE

Mathematical Reasoning test, it would seem that the results of this analysis (presented earlier in

Table 5) should be carefully studied, analyzed, and applied to the development of future GRE

quantitative and Mathematical Reasoning tests.

Consider the five inconsistent categories that were found across the two test

administrations. Since the operational categories developed for this study were not disjoint,

inconsistencies in the amount of DBF observed across administrations could be caused by

changes across administration in the concentration of secondary overlapping categories. As a

result of an ANOVA analysis, changes across administration in secondary overlapping categories

were found to account for three out of these five inconsistencies. Inconsistencies in DBF results

across administrations in the QCD and Probability and Statistics categories for the males-versus-

females comparison remained to be explained.

A SIBTEST bundle DBF analysis of the types of items included in the Probability and

Statistics category in each of the two administrations showed two homogeneous microcategories

significantly favoring males (Probability and Standard Deviation) and two homogeneous

microcategories significantly favoring females (Median and Median/Mean Comparison). While

the relative influence of three out of four of these significant microcategories was the same in

both administrations, the Standard Deviation microcategory (DBF observed level of significance

p-value of 0.001) was heavily represented in the first administration and not in the second

administration. Thus, the cause of the inconsistency for the Probability and Statistics category for

the males-versus-females comparison between administrations appears to have been the change

in the relative influence of one of the Probability and Statistics microcategories, Standard

Deviation.

Since one of QCD category�s overlapping categories was Probability and Statistics, the

inconsistency between administrations in the QCD category could also have been due to the
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changing character of the Probability and Statistics category across administrations. When the

ANOVA approach was used to adjust for the different character of the Probability and Statistics

category across administrations, the QCD category was no longer found to be inconsistent across

administrations. In effect, the internal change in the nature of the Probability and Statistics

category between administrations seems to have also caused the inconsistency in the DIF results

for the QCD category. Thus all five DBF inconsistencies between administrations were

explained.

The ANOVA approach was then slightly modified to decompose the amount of DBF for

each particular category into two parts: the �true� amount of DBF for the category and the

amount of DBF due to other overlapping categories. The results of this ANOVA approach as

applied to the GRE quantitative test are presented in Tables 6 and 7. Although interesting

because of the removal of confounding influences of secondary overlapping categories, these

results lack the statistical power of SIBTEST DBF hypothesis testing approaches.

While our analysis of the average impact per item for each category showed that the

amount of impact did vary somewhat from category to category, a positive and large impact was

found for every category across both administrations and for both group comparisons. However,

we must again emphasize that no covariates were analyzed in the impact studies, such as the

number of technical courses examinees had taken. Table 8 and Table 9, which summarize the

results of the impact analyses by group comparison, capture some of the project�s central

findings. Like Table 5, the results found in these tables may be potentially useful for future

equity work on the GRE quantitative and Mathematical Reasoning tests.

An experimental ANOVA analysis � in which certain categories or dimensions of items

were manipulated to determine how particular changes influenced DBF �suggested that

relatively noncognitive and superficial item characteristics can sometimes contribute

significantly to DBF, as has long been suspected by many DBF researchers. While this analysis

is preliminary, the experimental method that was used is very promising and should be explored

further (see Bolt, 2000, for a report of such an effort). It could become a valuable tool in future

test equity methodology.

This study was designed to function on two levels: a) as a presentation of GRE-

quantitative DBF and impact results that are relevant to future GRE quantitative and

Mathematical Reasoning tests, and b) more generally, as a demonstration of a highly useful
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methodology that combines statistical and content/cognitive considerations to produce a

powerful tool for the study of DBF and impact at the category level, with the goal of improving

test equity on all standardized tests. The methodology reported in this paper, which extended the

DBF paradigm of Roussos and Stout (1996) and was facilitated by the use of SIBTEST, served

to determine conceptual causes of DBF and impact in the GRE quantitative test. The analyses

described in this paper can be applied to future test design and evaluation of the GRE

quantitative and Mathematical Reasoning tests, as well as to other quantitatively oriented,

standardized tests. In general, this research can also serve as the basis of further study in the field

of test equity. Indeed, we would argue that the methodology developed for this study can greatly

help the testing industry use statistical DBF and impact analyses as integral tools in the

development and maintenance of equitable tests.

We again call practitioners� attention to the fact that all instances of DBF do not

constitute inequity. Secondary DBF-causing dimensions can be central to the construct a test is

designed to measure. By contrast, impact with no DBF present can sometimes cause inequity,

because impact can vary over equally valid tests for the same target construct but for which test

specifications differ.

In essence, the multidimensional DBF paradigm of Roussos and Stout (1996) and the

related SIBTEST bundle methodology developed for this study elevate the statistical quality-

control role of DIF (DBF) analyses from the mere removal of already manufactured, equity-

defective items to a new, more central role: improving test equity by using the SIBTEST bundle

methodology to modify the test specification and manufacturing process itself. The SIBTEST

bundle method, of course, is just one specific example of the modern proactive statistical

approach to quality control.
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Notes

1 As a technical point rendering the use of a conditional covariance as the measure of

dimensional homogeneity of an item pair not totally effective, we note that a conditional

covariance will be small for two dimensionally homogeneous items for which the directions

of best measurement are both close to the test�s direction of best measurement (see Zhang &

Stout, 1999). There are ways of compensating for this that lie outside the focus of this report.

2 Note the apparently paradoxical result that the QCD category was found to be highly

homogenous statistically, when in fact every QCD item always belongs to at least one other

category. From the content/cognitive perspective, the existence of a strongly distinct and very

influential cognitive processing aspect to QCD problems seems to transcend and dominate

the also-influential mathematical content components and their associated cognitive

processes. This was also the tentative conclusion of our research team, based on their

experience with solving QCD problems.

From a multidimensional latent space IRT modeling perspective, this suggests that the

discrimination coefficient corresponding to the cognitively unique aspect of QCD items is

relatively large compared with the discrimination coefficients corresponding to the

overlapping, category-based, latent secondary dimensions. This unique and highly influential

cognitive aspect of QCD items could be problematic if seen by test development experts as

peripheral, or even irrelevant, to the central measurement purpose of the GRE quantitative

test. However, if the cognitive nature of the problem-solving process for QCD items is

central, then this finding is not problematic, but rather indicates success in the construction of

QCD items.

3 If one is accustomed to using the Mantel-Haenzsel delta scale for measuring DIF, then

roughly, β  ≈ �∆ Ú 15. The two scales have opposite sign conventions.
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Appendix

Prototypical Questions for Operational Categories

All problems with a Column A and a Column B are quantitative comparison problems and have
the following possible answers:

A if the quantity in Column A is greater;
B if the quantity in Column B is greater;
C if the two quantities are equal;
D if the relationship cannot be determined from the information given.

Algebra

1. Column A Column B

y =  
3x

4
,  x =

2z

3
,  and z = 20.

      y      11

Answer: A

2. If 25 percent of a certain number is 1,600, what is 10 percent of the number?

(A) 40
(B) 400
(C) 640
(D) 1,440
(E) 4,000

Answer: C

Calculation Intensive

1. Column A Column B

8

2

12

3

Answer: C
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2. What is the least integer value of n such that 
1
2n < 0.01 ?

(A)  7
(B) 11
(C) 50
(D) 51
(E) There is no such least value

Answer: A

Fractions With Numbers

1. Column A Column B

1

12
of 17

1

17
of 12

Answer: A

2. The value of  (1−
5
7

)(1+
3
4

) is

(A)
1
28

(B)
3

14

(C)
9
28

(D)
13
28

(E)
1
2

Answer: E
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Pie Graph

PHYSICIANS CLASSIFIED BY CATEGORY IN 1977

Percent of Physicians by Category

100% = 421,300

1.  Approximately what was the ratio of physicians in the surgical category to physicians
in pathology?

(A) 10 to 1
(B) 8 to 1
(C) 7 to 1
(D) 5 to 6
(E) 4 to 5

Answer: B

2.  Approximately how may more physicians were in psychiatry than in radiology?

(A) 3,000
(B) 6,300
(C) 12,600
(D) 24,800
(E) 37,000

Answer: C
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Table

      CUSTOMER COMPLAINTS RECEIVED BY THE CIVIL AERONAUTICS BOARD

Category
1980

(percent)
1981

(percent)

Flight Problems  20.0%  22.1%
Baggage 18.3  21.8
Customer Service 13.1 11.3
Oversales of Seats 10.5 11.8
Refund Problems 10.1 8.1
Fares   6.4   6.0
Reservations and Ticketing   5.8   5.6
Tours   3.3     2.3
Smoking   3.2     2.9
Advertising   1.2     1.1
Credit   1.0     0.8
Special Passengers   0.9     0.9
Other   6.2     5.3

100.0% 100.0%

Total Number of Complaints ................................................................ 22,998 13,278

1.  Approximately how many complaints concerning credit were received by the Civil
Aeronautics Board in 1980?

(A) 1
(B) 23
(C) 132
(D) 230
(E) 2,299

Answer: D

2.  By approximately what percent did the total number of complaints decrease from
1980 to 1981?

(A) 9%
(B) 10%
(C) 21%
(D) 42%
(E) 173%

Answer: D
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Bar Graph

Total Student Enrollment Allocation of All Contributions

1.  What was the total number of students enrolled in College R in the fall of 1979?

(A) 200
(B) 250
(C) 500
(D) 650
(E) 700

Answer: E

2.  By what percent did the number of part-time students enrolled increase from the fall
of 1979 to the fall of 1980?

(A) 7%

(B) 42%

(C) 66
2
3

%

(D) 75%

(E) 80%

Answer: D
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Line Graph

FOREIGN TRADE OF COUNTRY X, 1964-1980
(in United States dollars)

1.  For which year shown on the graph did exports exceed the previous year�s exports by
the greatest dollar amount?

(A) 1972
(B) 1973
(C) 1975
(D) 1977
(E) 1980

Answer: D

2.  Which of the following is closest to the amount, in billions of dollars by which the
increase in exports from 1971 to 1972 exceeds the increase in exports from 1972 to
1973?

(A) 1.9
(B) 3.9
(C) 5.0
(D) 6.1
(E) 8.0

Answer: A
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Number Theory

1. Column A Column B

The greatest prime
factor of 15

The greatest prime
factor of 14

Answer: B

2. If a and b are both positive even integers, which of the following must be even?

I. ab

II. (a+1)b

III. a(b+1)

(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

Answer: D

Probability and Statistics

1. Column A Column B

The average (arithmetic mean) of x, y, and 6 is 3.

x + y
2

3
2

Answer: C

2. The average (arithmetic mean) of five numbers is 25. After one of the numbers is
removed, the average (arithmetic mean) of the remaining numbers is 31. What number
has been removed?

(A) 1
(B) 6
(C) 11
(D) 24
(E) It cannot be determined from the information given.

Answer: A
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QCD

1. Column A Column B

x 2 =16
y 3 = 64

x y

Answer: D

2. Column A Column B

AB BC

Answer: D

Word Conversion

1. Column A Column B

Working at constant rates, machine R completely
presses x  records in 0.5 hour and machine S

completely presses x  records in 0.75 hour (x > 0).

The number of
records completely
pressed by R in 3
hours

The number of
records completely
pressed by S in 4
hours

Answer: A

2. The price per pair of brand X socks is $2 and the price per pair of brand Y socks is $3.
If there is no sales tax and a customer chooses only from among these two brands,
what is the greatest number of pairs of socks that he can buy with exactly $25?

(A) 9
(B) 10
(C) 11
(D) 12
(E) 20

Answer: D
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Applied Geometry With Algebra

1. Column A Column B

The area of the circular region with center P is 16π.

x 4

Answer: A

2. A rectangular floor 18 feet by 10 feet is to be completely covered with carpeting that
costs x dollars per square yard. In terms of x, how many dollars will the carpeting
cost? (1 yard = 3 feet)

(A) 20x
(B) 28x
(C) 60x
(D) 180x
(E) 540x

Answer: A

Geometry Without Algebra

1. Column A Column B

ABCD is a parallelogram.

The area of
region ABCD

24

Answer: D
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2. If a rectangular block that is 4 inches by 4 inches by 10 inches is placed inside a right
circular cylinder of radius 3 inches and height 10 inches, the volume of the unoccupied
portion of the cylinder is how many cubic inches?

(A) 6π  - 16
(B) 9π  - 16
(C) 160  - 30π
(D) 60π  - 160
(E) 90π  - 160

Answer: E

Geometry With Memorized Formulae

1. Column A Column B

X 35

Answer: C

2. Column A Column B

x > y

z 60

Answer: A
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