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Foreword 
This booklet is essentially a transcription of a half-day class on equating that I teach for 
new statistical staff at ETS. The class is a nonmathematical introduction to the topic, 
emphasizing conceptual understanding and practical applications. The topics include raw 
and scaled scores, linear and equipercentile equating, data collection designs for equating, 
selection of anchor items, and methods of anchor equating. I begin by assuming that the 
participants do not even know what equating is. By the end of the class, I explain why the 
Tucker method of equating is biased and under what conditions. In preparing this written 
version, I have tried to capture as much as possible of the conversational style of the 
class. I have included most of the displays projected onto the screen in the front of the 
classroom. I have also included the tests that the participants take during the class.  
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Objectives 
Here is a list of the instructional objectives of the class (and, therefore, of this booklet). If 
the class is completely successful, participants who have completed it will be able to... 
 
Explain why testing organizations report scaled scores instead of raw scores. 

State two important considerations in choosing a score scale. 

Explain how equating differs from statistical prediction. 

Explain why equating for individual test-takers is impossible. 

State the linear and equipercentile definitions of comparable scores and explain why they 
are meaningful only with reference to a population of test-takers. 

Explain why linear equating leads to out-of-range scores and is heavily group-dependent 
and how equipercentile equating avoids these problems. 

Explain why equipercentile equating requires “smoothing.” 

Explain how the precision of equating (by any method) is limited by the discreteness of 
the score scale. 

Describe five data collection designs for equating and state the main advantages and 
limitations of each. 

Explain the problems of “scale drift” and “equating strains.” 

State at least six practical guidelines for selecting common items for anchor equating. 

Explain the fundamental assumption of anchor equating and explain how it differs for 
different equating methods. 

Explain the logic of chained equating methods in an anchor equating design. 

Explain the logic of equating methods that condition on anchor scores and the conditions 
under which these methods are biased. 
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Prerequisite Knowledge 
Although the class is nonmathematical, I assume that users are familiar with the 
following basic statistical concepts, at least to the extent of knowing and understanding 
the definitions given below. (These definitions are all expressed in the context of 
educational testing, although the statistical concepts are more general.)  
 
Score distribution: The number (or the percent) of test-takers at each score level. 

Mean score: The average score, computed by summing the scores of all test-takers and 
dividing by the number of test-takers.  

Standard deviation: A measure of the dispersion (spread, amount of variation) in a score 
distribution. It can be interpreted as the average distance of scores from the mean, 
where the average is a special kind of average called a “root mean square,” computed 
by squaring the distance of each score from the mean, then averaging the squared 
distances, and then taking the square root. 

Correlation: A measure of the strength and direction of the relationship between the 
scores of the same people on two tests. 

Percentile rank of a score: The percent of test-takers with lower scores, plus half the 
percent with exactly that score. (Sometimes it is defined simply as the percent with 
lower scores.) 

Percentile of a distribution: The score having a given percentile rank. The 80th 
percentile of a score distribution is the score having a percentile rank of 80. (The 50th 
percentile is also called the median; the 25th and 75th percentiles are also called the 
1st and 3rd quartiles.) 
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Why Not IRT? 
The subtitle of this booklet—“without IRT”—may require a bit of explanation. Item 
Response Theory (IRT) has become one of the most common approaches to equating test 
scores. Why is it specifically excluded from this booklet? The short answer is that IRT is 
outside the scope of the class on which this booklet is based and, therefore, outside the 
scope of this booklet. Many new statistical staff members come to ETS with considerable 
knowledge of IRT but no knowledge of any other type of equating. For those who need 
an introduction to IRT, there is a separate half-day class.  
 
But now that IRT equating is widely available, is there any reason to equate test scores 
any other way? Indeed, IRT equating has some important advantages. It offers 
tremendous flexibility in choosing a plan for linking test forms. It is especially useful for 
adaptive testing and other situations where each test-taker gets a custom-built test form. 
However, this flexibility comes at a price. IRT equating is complex, both conceptually 
and procedurally. Its definition of equated scores is based on an abstraction, rather than 
on statistics that can actually be computed. It is based on strong assumptions that often 
are not a good approximation of the reality of testing. Many equating situations don’t 
require the flexibility that IRT offers. In those cases, it is better to use other methods of 
equating—methods for which the procedure is simpler, the rationale is easier to explain, 
and the underlying assumptions are closer to reality. 
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Teachers’ Salaries and Test Scores 
I like to begin the class by talking not about testing but about teachers’ salaries. How did 
the average U.S. teacher’s salary in a recent year, such as 1998, compare with what it was 
40 years earlier, in 1958? In 1998, it was about $39,000 a year; in 1958, it was only about 
$4,600 a year.1 But in 1958, you could buy a gallon of gasoline for 30¢; in 1998 it cost 
about $1.05, or 3 1/2 times as much. In 1958 you could mail a first-class letter for 4¢; in 
1998, it cost 33¢, roughly eight times as much. A house that cost $20,000 in 1958 might 
have sold for $200,000 in 1998—ten times as much. So it’s clear that the numbers don’t 
mean the same thing. A dollar in 1958 bought more than a dollar in 1998. Prices in 1958 
and prices in 1998 are not comparable. 
 
How can you meaningfully compare the price of something in one year with its price in 
another year? Economists use something called “constant dollars.” Each year the 
government’s economists calculate the cost of a particular selection of products that is 
intended to represent the things that a typical American family buys in a year. The 
economists call this mix of products the “market basket.” They choose one year as the 
“reference year.” Then they compare the cost of the “market basket” in each of the other 
years with its cost in the reference year. This analysis enables them to express wages and 
prices from each of the other years in terms of reference-year dollars. To compare the 
average teacher’s salary in 1958 with the average teacher’s salary in 1998, they would 
convert both those salaries into reference-year dollars. 
 
Now, what does all this have to do with educational testing? Most standardized tests exist 
in more than one edition. These different editions are called “forms” of the test. All the 
forms of the test are intended to test the same skills and types of knowledge, but each 
form contains a different set of questions. The test developers try to make the questions 
on different forms equally difficult, but more often than not, some forms of the test turn 
out to be harder than others. 
 
The simplest way to compute a test-taker’s score is to count the questions answered 
correctly. If the number of questions differs from form to form, you might want to 
convert that number to a percent-correct. We call number-correct and percent-correct 
scores “raw scores.” If the questions on one form are harder than the questions on another 
form, the raw scores on those two forms won’t mean the same thing. The same percent-
correct score on the two different forms won’t indicate the same level of the knowledge 
or skill the test is intended to measure. The scores won’t be comparable. To treat them as if 
they were comparable would be misleading for the score users and unfair to the test-takers 
who took the form with the harder questions. 
 

                                                 
1 Source: www.aft.org/research/survey/tables (March 2003) 
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Scaled Scores 
Score users need to be able to compare the scores of test-takers who took different forms 
of the test. Therefore, testing agencies need to report scores that are comparable across 
different forms of the test. We need to make a given score indicate the same level of 
knowledge or skill, no matter which form of the test the test-taker took. Our solution to 
this problem is to report “scaled scores.” Those scaled scores are adjusted to compensate 
for differences in the difficulty of the questions. The easier the questions, the more 
questions you have to answer correctly to get a particular scaled score.  
 
Each form of the test has its own “raw-to-scale score conversion”—a formula or a table 
that gives the scaled score corresponding to each possible raw score. Table 1 shows the 
raw-to-scale conversions for the upper part of the score range on three forms of an actual 
test: 
 

Table 1. Raw-to-Scale Conversion Table for Three Forms of a Test 

Raw score Scaled score 
 Form R Form T Form U 

120 200 200 200 
119 200 200 198 
118 200 200 195 
117 198 200 193 
116 197 200 191 
115 195 199 189 
114 193 198 187 
113 192 197 186 
112 191 195 185 
111 189 194 184 
110 188 192 183 
109 187 190 182 
108 185 189 181 
107 184 187 180 
106 183 186 179 
105 182 184 178 
etc. etc. etc. etc. 
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Notice that on Form R to get the maximum possible scaled score of 200 you would need 
a raw score of 118. On Form T, which is somewhat harder, you would need a raw score 
of only 116. On Form U, which is somewhat easier, you would need a raw score of 120.  
 
Similarly, to get a scaled score of 187 on Form R, you would need a raw score of 109. On 
Form T, which is harder, you would need a raw score of only 107. On Form U, which is 
easier, you would need a raw score of 114. 
 
The raw-to-scale conversion for the first form of a test can be specified in a number of 
different ways. (I’ll say a bit more about this topic later.) The raw-to-scale conversion for 
the second form is determined by a statistical procedure called “equating.” The equating 
procedure determines the adjustment to the raw scores on the second form that will make 
them comparable to raw scores on the first form. That information enables us to 
determine the raw-to-scale conversion for the second form of the test.  
 
Now for some terminology. The form for which the raw-to-scale conversion is originally 
specified—usually the first form of the test—is called the “base form.” When we have 
determined the raw-to-scale conversion for a form of a test, we say that form is “on 
scale.” The raw-to-scale conversion for each form of the test other than the base form is 
determined by equating to a form that is already “on scale.” We refer to the form that is 
already on scale as the “reference form.” We refer to the form that is not yet on scale as 
the “new form.”  
 
Usually the “new form” is a form that is being used for the first time, while the “reference 
form” is a form that has been used previously. Occasionally we equate scores on two 
forms of the test that are both being used for the first time, but we still use the terms “new 
form” and “reference form” to indicate the direction of the equating. 
 
The equating process determines for each possible raw score on the new form the 
corresponding raw score on the reference form. This equating is called the “raw-to-raw” 
equating. But, because the reference form is already “on scale,” we can take the process 
one step further. We can translate any raw score on the new form into a corresponding 
raw score on the reference form and then translate that score to the corresponding scaled 
score. When we have translated each possible raw score on the new form into a scaled 
score, we have determined the raw-to-scale score conversion for the new form. 
 
Unfortunately, the process is not quite as simple as I have made it seem. A possible raw 
score on the new form almost never equates exactly to a possible score on the reference 
form. Instead, it equates to a point in between two raw scores that are possible on the 
reference form. So we have to interpolate. Consider the example in Table 2: 
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Table 2. New Form Raw Scores to Reference Form Raw Scores  
to Scaled Scores 

New form raw-to-raw equating 
 

 Reference form raw-to-scale conversion
 

New form Reference form  Reference form 
Raw score Raw score  Raw score 

Exact scaled score

... ...  ... ... 
59 60.39  59 178.65 
58 59.62  58 176.71 
57 58.75  57 174.77 
56 57.88  56 172.83 
... ...  ... ... 

 
 
(In this example, I have used only two decimal places. Operationally we use a lot more 
than two.) Now suppose a test-taker had a raw score of 57 on the new form. That score 
equates to a raw score of 58.75 on the reference form, which is not a possible score. But 
it is 75 percent of the way from a raw score of 58 to a raw score of 59. So the test-taker’s 
exact scaled score will be the score that is 75 percent of the way from 176.71 to 178.65. 
That score is 178.14. In this way, we determine the exact scaled score for each raw score 
on the new form. We round the scaled scores to the nearest whole number before we 
report them to test-takers and test users, but we keep the exact scaled scores on record. 
We will need the exact scaled scores when this form becomes the reference form in a 
future equating. 

Choosing the Score Scale 
Before we specify the raw-to-scale conversion for the base form, we have to decide what 
we want the range of scaled scores to be. Usually we try to choose a set of numbers that 
will not be confused with the raw scores. We want any test-taker or test user looking at a 
scaled score to know that the score could not reasonably be the number or the percent of 
questions answered correctly. That’s why scaled scores have possible score ranges like 
200 to 800 or 100 to 200 or 150 to 190.  
 
Another thing we have to decide is how fine a score scale to use. For example, on most 
tests, the scaled scores are reported in one-point intervals (100, 101, 102, etc.). However, 
on some tests, they are reported in five-point intervals (100, 105, 110, etc.) or ten-point 
intervals (200, 210, 220, etc.). Usually we want each additional correct answer to make a 
difference in the test-taker’s scaled score, but not such a large difference that people 
exaggerate its importance. That is why the score interval on the SAT2 was changed. 
Many years ago, when the SAT was still called the “Scholastic Aptitude Test,” any whole 

                                                 
2 More precisely, the SAT® I: Reasoning Test. 
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number from 200 to 800 was a possible score. Test-takers could get scaled scores like 
573 or 621. But this score scale led people to think the scores were more precise than 
they really were. One additional correct answer could raise a test-taker’s scaled score by 
eight or more points. Since 1970 the scaled scores on the SAT have been rounded to the 
nearest number divisible by 10. If a test-taker’s exact scaled score is 573.2794, that 
scaled score is reported as 570, not as 573. One additional correct answer will change the 
test-taker’s score by ten points (in most cases), but people realize that a ten-point 
difference is just one step on the score scale. 
 
One issue in defining a score scale is whether to “truncate” the scaled scores. Truncating 
the scaled scores means specifying a maximum value for the reported scaled scores that is 
less than the maximum value that you carry on the records. For example, we might use a 
raw-to-scale conversion for the base form that converts the maximum raw score to a 
scaled score of 207.1429, but truncate the scores at 200 so that no test-taker will have a 
reported scaled score higher than 200. (The raw-to-scale conversions shown in Table 1 
are an example.) If we truncate the scores, we will award the maximum possible scaled 
score to test-takers who did not get the maximum possible raw score. We will disregard 
some of the information provided by the raw scores at the top end of the score scale. Why 
would we want to do such a thing?  
 
Here’s the answer. Suppose we decided not to truncate the scaled scores. Then the 
maximum reported scaled score would correspond to a perfect raw score on the base 
form—100 percent. Now suppose the next form of the test proves to be easier than the 
base form. The equating might indicate that a raw score of 100 percent on the second 
form corresponds to the same level of knowledge as a raw score of 96 percent on the base 
form. There will probably be test-takers with raw scores of 100 percent on the easier 
second form whose knowledge would be sufficient for a raw score of only 96 percent on 
the harder base form. Is it fair to give them the maximum possible scaled score? But there 
may be other test-takers with raw scores of 100 percent on the easier second form whose 
knowledge is sufficient for a raw score of 100 percent on the harder base form. Is it fair 
to give them anything less than the maximum possible scaled score? Truncating the 
scaled scores—awarding the maximum possible scaled score for a raw score less than 
100 percent on the base form—helps us to avoid this dilemma. 
 
It is also common to truncate the scaled scores at the low end of the scale. In this case the 
reason is usually somewhat different—to avoid making meaningless distinctions. Most 
standardized tests are multiple-choice tests. On these tests, the lowest possible scores are 
below the “chance score.” That is, they are lower than the score a test-taker could expect 
to get by answering the questions without reading them. On most tests, if two scores are 
both below the chance score, the difference between those scores tells us very little about 
the differences between the test-takers who earn those scores. 
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There is more than one way to choose the raw-to-scale conversion for the base form of a 
test. One common way is to identify a group of test-takers and choose the conversion that 
will result in a particular mean and standard deviation for the scaled scores of that group. 
Another way is to choose two particular raw scores on the base form and specify the 
scaled score for each of those raw scores. Those two points will then determine a simple 
linear formula that transforms any raw score to a scaled score. For example, on the 
Praxis™ tests, we truncate the scaled scores at both ends. On the Praxis scale, the lowest 
scaled score is 100; the highest is 200. When we determine the raw-to-scale conversion 
for the first form of a new test, we typically make a scaled score of 100 correspond to the 
chance score on the base form. We make a scaled score of 200 correspond to a raw score 
of 95 percent correct on the base form.  
 
Some testing programs use a reporting scale that consists of a small number of broad 
categories. (The categories may be identified by labels, such as “advanced,” “proficient,” 
etc., or they may be identified only by numbers.) The smaller the number of categories, 
the greater the difference in meaning between any category and the next. But if each 
category corresponds to a wide range of raw scores, there will be test-takers in the same 
category whose raw scores differ by many points. To make matters worse, there will also 
be test-takers in different categories whose raw scores differ by only a single point. 
Reporting only the category for each test-taker will conceal some fairly large differences. 
At the same time, it will make small differences appear large. In my opinion, there is 
nothing wrong with grouping scores into broad categories and reporting the category for 
each test-taker if you also report a score that indicates the test-taker’s position within the 
category. 

Limitations of Equating 
Let’s go back to the topic I started with—teachers’ salaries. The economists’ “constant 
dollars” don’t adjust correctly for the cost of each kind of thing a teacher might want to 
spend money on. From 1958 to 1998, the prices of housing, medical care, and college 
tuition went up much more than the prices of food and clothing. The prices of some 
things, like electronic equipment, actually went down. Constant dollars cannot possibly 
adjust correctly for the prices of all these different things. The adjustment is correct for a 
particular mix of products—the “market basket.”  
 
Similarly, if you were to compare two different test-takers taking the same test, one test-
taker might know the answers to more of the questions on Form A than on Form B; the 
other might know the answers to more of the questions on Form B than on Form A. There 
is no possible score adjustment that will make Forms A and B equally difficult for these 
two test-takers. Equating cannot adjust scores correctly for every individual test-
taker. 
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Equating can adjust scores correctly for a group of test-takers—but not for every possible 
group. One group may contain a high proportion of test-takers for whom Form A is easier 
than Form B. Another group may contain a high proportion of test-takers for whom Form 
B is easier than Form A. There is no possible score adjustment that will make Forms A 
and B equally difficult for these two groups of test-takers. For example, if one form of an 
achievement test happens to have several questions about points of knowledge that a 
particular teacher emphasizes, that teacher’s students are likely to find that test form 
easier than other forms of the same test. But the students of most other teachers will not 
find that form any easier than any other form. The adjustment that is correct for that 
particular teacher’s students will not be correct for students of the other teachers. 
Equating cannot adjust scores correctly for every possible group of test-takers. 
 
If you read some of the papers and articles that have been written about equating, you 
may see statements that equating must adjust scores correctly for every individual test-
taker or that equating must adjust scores correctly for every possible group of test-takers. 
The examples I have just presented show clearly that no equating adjustment can possibly 
meet such a requirement.3  
 
Fortunately, an equating adjustment that is correct for one group of test-takers is likely to 
be at least approximately correct for most other groups of test-takers. Note the wishy-
washy language in that sentence: “likely to be at least approximately correct for most 
other groups of test-takers.” When we equate test scores, we identify a group of test-
takers for whom we want the equating to be correct. We call this group the “target 
population.” It may be an actual group or a hypothetical group. We may identify it 
explicitly or only implicitly. But every test score equating is an attempt to determine the 
score adjustment that is correct for some target population. How well the results generalize to 
other groups of test-takers will depend on how similar the test forms are. The smaller the 
differences in the content and difficulty of the questions on the two forms of the test, the 
more accurately the equating results will generalize from the target population to other 
groups of test-takers. 
 
Another limitation of equating results from the discreteness of the scores. Typically the 
scaled scores that we report are whole numbers. When the equating adjustment is applied 
to a raw score on the new form, and the equated score is converted to a scaled score, the 
result is almost never a whole number. It is a fractional number—not actually a possible 
scaled score. Before reporting the scaled score, we round it to the nearest whole number. 
As a result, the scaled scores are affected by “rounding errors.”  

                                                 
3 Fred Lord proved this point more formally. He used the term “equity requirement” to mean a requirement 
that an equating adjustment be correct for every group of test-takers that can be specified on the basis of the 
ability measured by the test. This requirement is weaker than requiring the adjustment to be correct for 
every possible group of test-takers and far weaker than requiring it to be correct for every individual test-
taker. Lord concluded that “... the equity requirement cannot hold for fallible tests unless x and y are 
parallel tests, in which case there is no need for any equating at all.” (Lord, 1980, pp. 195-196)  
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If the score scale is not too discrete—if there are lots of possible scaled scores and not too 
many test-takers with the same scaled score—rounding errors will not have an important 
effect on the scores. But on some tests the raw scores are highly discrete. There are just a 
few possible scores, with substantial percentages of the test-takers at some of the score 
levels. If we want the scaled scores to imply the same degree of precision as the raw 
scores, then the scaled scores will also have to be highly discrete: a small number of 
score levels with large proportions of the test-takers at some of those score levels. But 
with a highly discrete score scale, a tiny difference in the exact scaled score that causes it 
to round downward instead of upward can make a substantial difference in the way the 
score is interpreted.  
 
For a realistic example, suppose that the possible raw scores on an essay test range from 
0 to 12, but nearly all the test-takers have scores between 3 and 10. On this test, a 
difference of one raw-score point may be considered meaningful and important. Now 
suppose the equating indicates that a raw score of 7 on Form B corresponds to a raw 
score of 6.48 on Form A. What can we conclude about the test-takers who took Form B 
and earned raw scores of 7? The equating results indicate that it would be a mistake to 
regard them as having done as well as the test-takers with scores of 7 on Form A. But it 
would be almost as large a mistake to regard them as having done no better than the test-
takers who earned scores of 6 on Form A. One solution to this problem would be to use a 
finer score scale, so that these test-takers could receive a scaled score halfway between 
the scaled scores that correspond to raw scores of 6 and 7 on Form A. But then the scaled 
scores would imply finer distinctions than either form of the test is capable of making. In 
such a situation, there is no completely satisfactory solution.  

Equating Terminology 
I have already introduced several terms that we in the testing profession use to talk about 
equating. Now I would like to introduce two more terms. Equating test scores is a 
statistical procedure; it is based on an analysis of data. Therefore, in order to equate test 
scores, we need (1) a plan for collecting the data and (2) a way to analyze the data. We 
call a plan for collecting the data an “equating design.” We call a way of analyzing the 
data an “equating method.” 
 
Here is a summary of the terms I have introduced: 
 
Raw score: An unadjusted score: number correct, sum of ratings, percent of maximum 

possible score, “formula score” (number correct, minus a fraction of the number 
wrong), etc. 

Scaled score: A score computed from the raw score; it usually includes an adjustment for 
difficulty. It is usually expressed on a different scale to avoid confusion with the raw 
score. 
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Base form: The form on which the raw-to-scale score conversion was originally 

specified. 

New form: The test form we are equating; the test form on which we need to adjust the 
scores. 

Reference form: The test form to which we are equating the new form. Equating 
determines for each score on the new form the corresponding score on the reference 
form. 

Target population: The group of test-takers for which we want the equating to be 
exactly correct.  

Truncation: Assigning scaled scores in a way that does not discriminate among the very 
highest raw scores or among the very lowest raw scores. 

Equating design: A plan for collecting data for equating. 

Equating method: A way of analyzing data to determine an equating relationship. 

Equating Is Symmetric 
One important characteristic of an equating relationship is “symmetry.” An equating 
relationship is symmetric. That is, if score x on Form A equates to score y on Form B, 
then score y on Form B will equate to score x on Form A. You may wonder what’s 
remarkable about that. Aren’t all important statistical relationships symmetric? The 
answer is no. In particular, statistical prediction is not symmetric. 
 
Statistical prediction is affected by a phenomenon called “regression to the mean,” 
illustrated in the diagram on the left in Figure 1. Suppose a large group of test-takers took 
two forms of a test: Form A and Form B. Let’s choose a particular score on Form A. In 
Figure 1, I have chosen x to be a high score, far above the mean of the whole group. And 
let’s focus on just the test-takers with scores of x on Form A. Let’s look at those test-
takers’ scores on Form B, and compute the average—call it y. Now, y is the average score 
on Form B for the group of test-takers with scores of x on Form A. We will find that y is 
closer to the mean score of all the test-takers on Form B than x was to the mean on Form 
A—closer in relation to the standard deviation of the scores of all the test-takers. 
(Incidentally, the weaker the correlation between the scores on Forms A and B, the 
stronger this effect will be. If the correlation were zero, the average score on Form B for 
the group of test-takers with scores of x on Form A would be the same as the mean score 
of all the test-takers.) 
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Statistical prediction is not symmetric

Form A Form B Form A Form B

Equating is symmetric

x
z y

x y

 
Figure 1. Statistical prediction is not symmetric; equating is symmetric. 

 
 
Now let’s focus on a different group of the test-takers—those who actually earned scores 
of y on Form B. Let’s compute their average score on Form A, and call it z. We will find 
that z is closer to the mean score of all the test-takers on Form A than y was to the mean 
on Form B. Therefore, z will be closer to the mean score of all the test-takers on Form A 
than x was. So if we start with score x on Form A, use it to predict score y on Form B, 
and then take score y on Form B and use it to predict score z on Form A, we will find that 
z is not equal to x. We won’t wind up back where we started. Statistical prediction is not 
symmetric. 
 
The diagram on the right in Figure 1 illustrates the symmetry of equating. If score x on 
Form A equates to score y on Form B, then score y on Form B equates to score x on Form 
A. Equating is symmetric; statistical prediction is not. Therefore, equating is not the same 
as statistical prediction. When we equate scores on Form A to scores on Form B, a test-
taker’s adjusted score on Form A will generally not be the best prediction of that test-
taker’s score on Form B. When we equate test scores on a new form to scores on a 
reference form, we are not trying to use test-takers’ scores on the new form to predict 
their performance on the reference form. We are doing something different. Equating is 
not prediction, and prediction is not equating. 
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A General Definition of Equating 
There is a single definition of equating that is general enough to include all of the types 
of equating I am going to describe. Here it is:  
 

A score on the new form and a score on the reference form are equivalent in a 
group of test-takers if they represent the same relative position in the group.   

 
You probably noticed that this definition states explicitly that the equating relationship is 
defined for a particular group of test-takers. What you might not notice is that it is 
missing an important detail. If you actually try to use this definition to determine a score 
adjustment, you will realize that you have to specify what you mean by “relative 
position.” 
 
You may also have noticed that this definition says nothing about the knowledge or skills 
measured by the new form and the reference form. If you simply applied this definition, 
you could equate scores on two tests that measure very different skills or types of 
knowledge. In practice we sometimes do apply procedures based on this definition to 
scores on tests that measure different things—but in that case we try to describe what we 
are doing by some term other than “equating.” 

A Very Simple Type of Equating 
Suppose you wanted to equate scores on a new form of a test to scores on a reference 
form of that test. And suppose that somehow you actually knew the distribution of scores 
in the target population on each of these forms of the test. What would your equating 
adjustment be? 
 
The simplest adjustment would be to add the same number of points to the score of each 
test-taker taking the new form (or subtract the same number of points, if the new form is 
easier). How many points would you add or subtract? An obvious choice would be the 
difference between the target population’s mean score on the reference form and their 
mean score on the new form. This adjustment would make the adjusted scores on the new 
form have the same mean (in the target population) as the scores on the reference form. 
For that reason, it is sometimes called “mean equating.”4 
 
Would this adjustment fit the general definition of equating shown above? Suppose a 
test-taker’s raw score on the new form is five points above the target population’s mean 
score. Then the test-taker’s adjusted score on the new form will be five points above the 
target population’s mean score on the reference form. The test-taker’s adjusted score will 
have the same relative position in the target population’s reference form score 
distribution as her raw score on the new form has in the target population’s new-form 

                                                 
4 See, for example, Kolen and Brennan (1995, p. 29). 
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score distribution—if “relative position” means “number of points above or below the 
mean.” So this adjustment would fit the definition. 
 
But would it be a good adjustment to use? Let me use a made-up example to illustrate the 
problem. Suppose the numbers of easy and difficult questions on the new form and the 
reference form are like those in Table 3:  
 

Table 3. Difficulty of Questions in Two Forms of a Test (Illustrative Example) 

Difficulty of questions   Number of questions 
 New form Reference form 
   

Very difficult 5 2 
Difficult 10 8 
Medium 20 30 

Easy 10 8 
Very easy 5 2 

 
 
The strongest test-takers won’t have trouble with easy or medium-difficulty questions. 
For them, a difficult form is one that has a lot of difficult questions. An easy form is one 
with few difficult questions. The new form has more difficult questions than the reference 
form. For the strongest test-takers, the new form will be more difficult than the reference 
form. To make their scores on the new form comparable to their scores on the reference form, 
we will need to add points.  
 
The weakest test-takers won’t have much success with the difficult questions. For them, an 
easy form is one that has plenty of easy questions. A difficult form is one with few easy 
questions. And there are more easy questions on the new form than on the reference 
form. For the weakest test-takers, the new form will be easier than the reference form. To 
make their scores on the new form comparable to their scores on the reference form, we 
will need to subtract points.  
 
Conclusion: in this example, adding the same number of points to everyone’s score is not 
a good way to adjust the scores. As I said, this is a made-up example. I have exaggerated 
the differences between the two test forms. In the real world of testing, we seldom (if 
ever) see differences this large in the difficulty of the questions on two forms of a test. 
But we do see differences, and the problem still exists. 
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Linear Equating 
The previous example shows that we need an adjustment that depends on how high or 
low the test-taker’s score is. We can meet this requirement with an adjustment that 
defines “relative position” in terms of the mean and the standard deviation:  

A score on the new form and a score on the reference form are equivalent in a 
group of test-takers if they are the same number of standard deviations above or 
below the mean of the group.  

This definition implies the following procedure for adjusting the scores: 
 

To equate scores on the new form to scores on the reference form in a group  
of test-takers, transform each score on the new form to the score on the reference 
form that is the same number of standard deviations above or below the mean of 
the group. 

 
This type of equating is called “linear equating,” because the relationship between the 
raw scores and the adjusted scores appears on a graph as a straight line. The diagrams in 
Figure 2 illustrate linear equating in a situation where the new form is harder than the 
reference form.  
 

-1 SD   Mean  +1 SD -1 SD   Mean  +1 SD

Raw 
score on 
ref. form

Raw score on new form

+1 SD

-1 SD

Mean

Adjusted 
score on 
new form

Raw score on new form

+1 SD

-1 SD

Mean

 
 

Figure 2. Linear equating; new form harder than reference form. 
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The first diagram shows the means and standard deviations of the raw scores on the new 
form and the reference form in the target population. The second diagram shows the 
equating adjustment. The mean of the adjusted scores on the new form is equal to the 
mean of the raw scores on the reference form. The same is true for the score one 
standard deviation above the mean; also for the score one standard deviation below the 
mean. And so on for every possible score on the new form (and for the values in between 
the possible scores). If we plot a data point for each possible raw score, the data points 
will all lie on the slanting line.  
 
The definition of linear equating and the linear equating adjustment can be written simply 
as mathematical formulas. (These will be the only formulas in this booklet!) Here is the 
definition of linear equating, written as a formula: If X represents a score on the new form 
and Y represents a score on the reference form, then X and Y are equivalent in a group of 
test-takers if  
 

)SD(
)mean(

)SD(
)mean(

X
XX

Y
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=
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where the means and standard deviations are computed in that group of test-takers (e.g., 
the target population). Solving this equation for the reference form score Y will give us a 
formula for adjusting any given raw score X on the new form: 
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The adjusted scores on the new form will have the same mean and standard deviation as 
the raw scores on the reference form.  
 
Since the means and standard deviations in the group are constants (the same for all test-
takers), the linear equating adjustment consists simply of multiplying the test-taker’s 
score on the new form by one number and adding another number. But when you apply 
the formula, if the new-form raw score is a whole number, the adjusted score will almost 
never be a whole number. If the only possible raw scores on the test are whole numbers, 
the adjusted score will not be a score that is actually possible on the reference form. 
When we apply the raw-to-scale conversion for the reference form, we will have to 
interpolate. I call this problem the “discreteness problem” or the “in-between score 
problem.” The only kinds of tests for which we will not have this problem are tests on 
which any number can be a possible score.5  

                                                 
5 There aren’t very many such tests. One example would be a test scored by measuring the time it takes the 
test-taker to finish a task or a set of tasks. 
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Problems with linear equating 
Look again at the diagrams illustrating linear equating in Figure 2. In the second diagram, 
notice that the equating line goes outside the range of scores possible on the reference 
form. The diagram implies that the highest raw scores on the new form are comparable to 
scores that are substantially higher than the highest score possible on the reference form! 
This is not a mistake in the diagram. It is a characteristic of linear equating. A very high 
or very low score on the new form can equate to a score outside the range of possible 
scores on the reference form. Suppose we are using a linear equating method to equate 
scores on two forms of a 100-question test. If the new form is harder than the reference 
form, the equating might indicate that a raw score of 99 questions correct on the new 
form is comparable to a raw score of about 103 questions correct on the reference form. 
A raw score of 103 questions correct on a 100-question test is a difficult thing to explain. 
 
Another problem with linear equating is that the results can depend heavily on the group 
of test-takers. When the two forms of the test differ in difficulty, the linear equating in a 
strong test-taker group can differ noticeably from the linear equating in a weak test-taker 
group. Figure 3 illustrates how this kind of thing happens.  
 
The diagrams in Figure 3 illustrate the linear equating of the same two forms of a test in 
two different groups of test-takers: a strong group and a weak group. In this hypothetical 
example, the new form is relatively hard, and the reference form is relatively easy. (In the 
diagrams, I have exaggerated these differences to make it easier to see what is going on. 
In a real testing situation the differences would not be so obvious.) 
 
The first diagram shows what happens when a strong group takes both forms. When the 
strong group takes the hard new form, the scores are widely spread out. But when the 
strong group takes the easy reference form, the scores are bunched together at the high 
end of the possible raw-score range. The equating line has a shallow slope. 
 
The second diagram shows what happens when a weak group takes both forms. When the 
weak group takes the hard new form, the scores are bunched together at the low end of 
the possible raw-score range. But when the weak group takes the easy reference form, the 
scores are widely spread out. The equating line will have a steep slope. 
 
To equate a harder new form to an easier reference form, we really need an equating 
adjustment that will have a shallow slope for the strong test-takers and a steep slope for 
the weak test-takers. But that will require a different type of equating based on a different 
definition of “relative position.” 
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Figure 3. Linear equating in a strong test-taker group and in  

a weak test-taker group. 

 

Equipercentile Equating 
An even better way to define “relative position” for the purpose of equating test scores is 
in terms of percentile ranks:  
 

A score on the new form and a score on the reference form are equivalent  
in a group of test-takers if they have the same percentile rank in the group.  

 
This definition implies the following procedure for adjusting the scores: 
 

To equate scores on the new form to scores on the reference form in  
a group of test-takers, transform each score on the new form to the score  
on the reference form that has the same percentile rank in that group. 

 
This type of equating is called “equipercentile equating.”  
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The diagrams in Figure 4 illustrate equipercentile equating in a situation where the new 
form is harder than the reference form. The first diagram shows the 10th, 25th, 50th, 
75th, and 90th percentiles of the raw scores on the new form and on the reference form in 
the target population. A hard form of the test will tend to spread out the scores of the 
strong test-takers; the weak test-takers’ score will be bunched together at the bottom. 
Notice that on the hard new form, the higher percentiles are farther apart and the lower 
percentiles are closer together. An easy form of the test will tend to spread out the scores 
of the weak test-takers; the strong test-takers’ scores will be bunched together at the top. 
Notice that on the easy reference form, the lower percentiles are farther apart and the 
higher percentiles are closer together.  
 

Percentiles of raw scores on new form

Percentiles 
of raw 
scores on 
reference 
form

10th 25th 50th 75th 90th

90th

50th

75th

25th

10th

Percentiles of raw scores on new form
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of adjusted 
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new form

10th 25th 50th 75th 90th

90th

50th

75th

25th

10th

 
 

Figure 4. Equipercentile equating; new form harder than reference form. 
 
 
The second diagram in Figure 4 shows the equating adjustment. The 10th percentile of 
the adjusted scores on the new form is equal (as nearly as possible) to the 10th percentile 
of the raw scores on the reference form, in the target population. And likewise for the 
other percentiles. Every score on the new form is adjusted to be equal to the raw score on 
the reference form that has the same percentile rank in the target population (as nearly as 
possible). If we plot a point for each possible raw score on the new form, with the height 
of the point indicating the adjusted score, the points will lie on the curve shown in the 
diagram. Notice that the adjusted scores on the new form are all within the range of 
scores possible on the reference form. Also notice that the slope of the curve is steep for 
lower scores (i.e., for the weaker test-takers) and shallow for higher scores (i.e., for the 
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stronger test-takers). These variations in the slope make it possible for the equating 
relationship to apply to the weaker test-takers and also to the stronger test-takers. 
 
Equipercentile equating will make the adjusted scores on the new form have very nearly 
the same distribution as the scores on the reference form in the target population. (I have 
to say “very nearly” because of the discreteness of the scores.) And, because the score 
distributions are very nearly the same, the means and the standard deviations in the target 
population will be very nearly the same for the adjusted scores on the new form as for the 
raw scores on the reference form. 
 
When will linear equating and equipercentile equating produce the same (or very nearly 
the same) results? When the distributions of scores on the new form and on the reference 
form in the target population have the same shape. In that case, a linear adjustment can 
make the adjusted scores on the new form have (very nearly) the same distribution as the 
raw scores on the reference form. And if the two distributions are the same, all their 
percentiles will be the same. Consequently, if the score distributions (in the target 
population) on the new form and the reference form have the same shape, the linear 
equating and the equipercentile equating will (very nearly) coincide. But if the score 
distributions for the new form and the reference form have different shapes, there is no 
linear adjustment to the scores on the new form that will make the distribution the same 
(or even nearly the same) as the distribution of scores on the reference form. The 
adjustment resulting from equipercentile equating will not be linear. There is no simple 
mathematical formula for the equipercentile equating adjustment. 

A problem with equipercentile equating and a solution 
The main problem with equipercentile equating is that the score distributions we actually 
see on real tests taken by real test-takers are irregular. Figure 5 shows the distribution of the 
raw scores of 468 test-takers on a real test of 39 multiple-choice items. These 468 test-takers 
were selected at random from the 8,426 test-takers who took the test. Notice the 
irregularities in the score distribution. The percentage of the test-takers with a given score 
does not change gradually as the scores increase; it fluctuates.  
 
Irregularities in the score distributions cause problems for equipercentile equating. They 
produce irregularities in the equipercentile equating adjustment, and those irregularities 
do not generalize to other groups of test-takers. Figure 6 shows the distribution of the raw 
scores of 702 other test-takers on the same test, selected at random from the same large 
group of 8,426 who took the test. Notice that the distributions in Figures 5 and 6 are 
similar in some ways, but not in others. The overall level of the scores, the extent to 
which they are spread out, and the general shape of the distribution are similar in the two 
distributions. But the irregularities in Figure 5 do not correspond to those in Figure 6. In 
general, the location, the spread, and the general shape of a score distribution will tend to 
generalize to other groups of test-takers; the irregularities in the distribution will not.  
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Figure 5. Score distribution observed in a sample of 468 test-takers. 
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Figure 6. Score distribution observed in a sample of 702 test-takers. 
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These graphs suggest a way to overcome the problem of irregularities: replace the 
observed score distribution with a distribution that has the same location, spread, and 
shape, but not the irregularities. The general name for this technique is “smoothing.” 
(When it is applied to score distributions before they are used to determine an equating 
relationship, some equating experts refer to it as “presmoothing.”) There are various ways 
of smoothing score distributions, and some of them work better than others. The most 
commonly used smoothing methods allow the user to make decisions that determine how 
strong the smoothing will be—how far the smoothed distribution will be permitted to 
depart from the observed distribution. If the smoothing is not strong enough, it will not 
remove the irregularities. If the smoothing is too strong, it will change the shape of the 
distribution.  
  
At ETS we use a method developed by ETS statisticians in the 1980s called “log-linear 
smoothing.”6 Figure 7 shows a smoothed distribution produced by applying this method 
to the distribution shown in Figure 5—the score distribution in the sample of 468 test-
takers. You can see how the smoothed distribution in Figure 7 preserves the general 
shape of the observed distribution in Figure 5, while smoothing out the irregularities. But 
how well does it approximate the distribution in the population of 8,426 test-takers that 
the 468 in the sample were randomly selected from? That distribution is shown in 
Figure 8. By comparing the population distribution in Figure 8 with the observed sample 
distribution in Figure 5 and the smoothed sample distribution in Figure 7, you can see 
how much the smoothed sample distribution improves on the observed sample 
distribution as an estimate of the population distribution. 
 
How much does smoothing the distributions improve the accuracy of the equipercentile 
equating? It seems likely that the answer would depend on how smooth the observed 
distributions are already before you do the smoothing. The smaller the numbers of test-
takers that the distributions are based on, the greater the benefit you can expect from 
smoothing. In the early 1990s, we did a research study at ETS to investigate this question 
for equatings in which the distributions were computed from small samples of test-takers 
(200, 100, 50, and 25).7 In that study, the improvement that resulted from smoothing the 
distributions before equating was about the same as the improvement that resulted from 
doubling the number of test-takers in the samples.  
 
 

                                                 
6This method allows the user to specify how many moments of the observed score distribution will be 
preserved in the smoothed distribution: the mean, standard deviation, skewness, etc. For the mathematics of 
this method, see Holland and Thayer (1987, 2000). For a review and comparison of several smoothing 
methods, see Kolen (1991). 
7 See Livingston (1993). 
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Figure 7. Score distribution in sample of 468 test-takers, smoothed. 
 
 

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Score

Pe
rc

en
t

 
 

Figure 8. Score distribution observed in full group of 8,426 test-takers. 
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If you want to do equipercentile equating, and you don’t have a good way to smooth the 
score distributions, there is an alternative. You can perform an equipercentile equating 
based on the observed distributions and then smooth the equating relationship. (Some 
equating experts refer to this approach as “post-smoothing.”)8 

A limitation of equipercentile equating 
One limitation of equipercentile equating is that the equating relationship cannot be 
determined for the parts of the score range above the highest score you observe and 
below the lowest score you observe. If you could observe the scores of the entire target 
population on both forms of the test, this limitation would not be a problem. In practice, it 
is not usually a problem for very low scores, because test users rarely need to discriminate at 
score levels below the lowest score observed. However, it can be a problem at high score 
levels on a difficult test, because some future test-taker may get a raw score higher than 
the highest score in the data used for the equating. 
 
Smoothing can help solve this problem because many smoothing methods will produce a 
smoothed distribution with nonzero probabilities (possibly very small, but not zero) at the 
highest and lowest score levels, even if no test-takers actually attained those scores. 
However, at those very high and very low score levels, the equating relationship 
computed from the smoothed distributions will be based on scores that were not actually 
observed! 

Equipercentile equating and the discreteness problem 
I said earlier that one limitation of equating comes from the discreteness of the score 
scale. That limitation applies to any type of equating. For linear equating, the discreteness 
of the scale does not cause a problem in computing the adjustment—only in applying the 
adjustment after it is computed. But for equipercentile equating, the discreteness of the 
score scale causes a problem in computing the adjustment. Table 4 illustrates the 
problem. 
 
  

                                                 
8 Kolen and Brennan (1995, pp. 66-104) present and discuss pre-smoothing and post-smoothing methods. 
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Table 4. Example of the Discreteness Problem in Equipercentile Equating 

New form  Reference form 
Raw score Percentile rank  Raw score Percentile rank 

     
52 78.07  52 68.96 
51 74.95  51 65.09 
50 71.64  50 61.12 
49 68.18  49 57.07 
48 64.60  48 52.99 
47 60.92  47 48.93 
46 57.18  46 44.93 
45 53.41  45 41.01 
44 49.65  44 37.23 
43 45.93  43 33.60 
42 42.28  42 30.15 

 
 
This table shows the percentile ranks in the same group of test-takers for part of the score 
range on two forms of a test. Let’s assume that this group is the target population for 
equating. A score of 45 on the new form has a percentile rank of 53.41. What score on 
the reference form has this percentile rank? There is no score that has that percentile rank. 
A score of 48 has a percentile rank of 52.99; a score of 49 has a percentile rank of 57.07. 
The equipercentile adjustment should adjust a score of 45 on the new form to a score 
somewhere between 48 and 49 on the reference form. The usual way to determine this 
score is by interpolation. Using interpolation, the adjusted score on the new form for a 
raw score of 45 would be  
 

10.48)4849(
99.5207.57
99.5241.5348 =−

−
−

+ . 

 
Interpolation does not eliminate the problem inherent in the equipercentile definition of 
equating—that it is usually impossible to find a score on the reference form with exactly 
the same percentile rank as a given score on the new form.9 But interpolation provides a 
practical way to do equipercentile equating. The adjusted scores that it produces will have 
very nearly (although not exactly) the same mean, standard deviation, skewness, etc., as 
the raw scores on the reference form.  

                                                 
9 This theoretical problem, and the fact that interpolation does not completely solve it, led Paul Holland to 
develop “kernel equating” (Holland & Thayer, 1989, pp. 1-6). 
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Test: Linear and Equipercentile Equating 
At this point in the class, the students take a short, self-administered test on linear and 
equipercentile equating. Then we discuss the answers to fill in any gaps in the instruction 
and to clear up any misunderstandings that may have occurred. Here is the test. The 
answers appear in a separate section in the back of this booklet. 
 
For each statement, check “yes” or “no” to indicate whether or not the statement applies 
to each of these two types of equating. 
 
Its purpose is to adjust the scores for differences in the difficulty of the questions on the test. 
 
True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
 
 
It requires data on the performance of people taking the test. 
 

True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
 
 
It produces an adjustment that is correct for every person in the target population. 
 

True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
 
 
The adjustment to the scores consists of multiplying by one number and then adding 
another. 
 

True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
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The results can be improved by smoothing the score distributions before equating. 
 

True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
 
 
The adjusted scores on the new form will generally fall in between the scores that are 
actually possible on the reference form. 
 

True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
 
 
Some adjusted scores on the new form can be several points higher than the highest score 
possible on the reference form. 
 

True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
 
 
The adjusted score on the new form is the best prediction of the score the test-taker would 
get on the reference form. 
 

True of linear equating? Yes  No  
True of equipercentile equating? Yes  No  
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Equating Designs 
An equating design is a plan for collecting the data you need for equating. You can do 
either linear equating or equipercentile equating with the data from any equating design. 
 
Let’s indulge in a bit of wishful thinking. What information would we most like to have 
for equating the scores on two forms of a test? What we really want are two score 
distributions: the score distribution that would result if the entire target population took 
only the new form and the score distribution that would result if the entire target 
population took only the reference form.  
 
Now let’s get real. What kind of information can we get in the real world that will enable 
us to equate the scores on two forms of a test? We need some way to link the information 
about the new form to the information about the reference form. I know of three ways to 
get this kind of information. (1) We can get data on both forms from the same test-takers. 
(2) We can get data on the two forms from two groups of test-takers that we know to be 
equal in the skills measured by the test. (3) We can get some other relevant information 
about the test-takers taking the different forms—ideally, another measure of the same 
skills that the test measures—and use that information as the basis for the adjustment.  
 
These three ways to link the two forms lead to five different equating designs. Each 
design has its advantages and limitations. And each design requires an assumption about 
what statistical relationships (that we can observe in the scores we collect) will generalize 
to the target population. 

The single-group design 
The simplest equating design is to have the same test-takers take both the new form and 
the reference form. This equating design is called the “single-group” design. The implicit 
assumption is that the equating relationship that we observe in this group of test-takers 
will generalize to the target population. It is not necessary that the group of test-takers be 
a representative sample of the target population. The group taking the test can be stronger 
than the target population, as long as the test-takers are stronger to the same degree on the 
new form as on the reference form. Similarly, the group taking the test can be weaker 
than the target population or more diverse or less diverse—as long as the test-takers differ 
from the target population in the same way on the new form as on the reference form. 
 
The main advantage of the single-group design is that, because the same test-takers take 
both forms of the test, it is statistically powerful. In comparison to most other equating 
designs, it offers a highly accurate equating in relation to the number of test-takers 
included in the design. Looking at it another way, it requires fewer test-takers for a given 
level of accuracy.  
The main disadvantage of the single-group design is that the test-takers’ performance on 
the second form they take is likely to be affected by the experience of taking the first 
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form. The single-group design is highly sensitive to order effects—practice effects or, in 
some cases, fatigue effects. Unless we are willing to assume that these effects are 
negligible, we can use the single-group design only if the test-takers take both forms at 
the same time.  
 
But how can we ever have test-takers take the new form and the reference form at the 
same time? One such situation occurs when we have to remove one or more questions 
from a test before reusing it. (That can happen for a number of different reasons, 
including new knowledge in the subject tested or changes in the way the subject is 
taught.) In this situation, the new form is simply the reference form minus the questions 
that are being deleted. For equating, we use the data from a group of test-takers who took 
the test before those questions were deleted. We compute two different scores for each 
test-taker: a reference form score that includes the deleted questions and a new form 
score that excludes them. These scores are the basis for the equating.  
 
We can also use the single-group design when one or more questions are being added to a 
test. For equating, we use the data from a group of test-takers who took the test with the 
new questions included. In this case, the new form score would include the new 
questions; the reference form score would exclude them. 
 
Another such situation occurs in constructed-response testing (essay tests, performance 
assessments, etc.). Sometimes the new form of the test contains exactly the same 
questions or problems as the reference form—the difference is in the scoring rules or 
procedure. In that case, we can equate the new-form scores to the reference form scores 
by having a group of test-takers’ responses scored twice. Since the questions are the same 
on both forms, these responses can come either from test-takers taking the new form or 
from test-takers taking the reference form (or both). The first scoring is done with the 
scoring rules and procedure used on the reference form; the second scoring is done with 
the scoring rules and procedure used on the new form. For each test-taker, we compute a 
new form score, based on the ratings assigned with the new form scoring rules and 
procedure, and a reference form score, based on the ratings assigned with the reference 
form scoring rules and procedure. 

The counterbalanced design 
In the usual equating situation—two test forms that are really different forms, not just 
different versions of the same form—the problem of order effects makes the single-group 
equating design unsuitable. One way to overcome the problem is to divide the test-takers 
into two groups and “counterbalance” the order in which the groups take the two forms. 
One group takes the new form first and the reference form second; the other group takes 
the reference form first and the new form second. The test-takers have to take the two 
forms close together in time—close enough that there will be no real change in their level 
of the knowledge or the skills that the test measures. Ideally, the two groups of test-takers 
should be as similar as possible. In practice, this design usually produces good results 
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even if the groups differ somewhat. With this equating design, it is best that the two 
forms not have any questions in common. 
 
The key assumption of the counterbalanced design is that any order effects will balance 
out. When we use this design, we are assuming that the experience of taking the new 
form will affect performance on the reference form just as much as taking the reference 
form will affect performance on the new form. As in the single-group design, the groups 
don’t have to be representative of the target population. They can be somewhat stronger 
or weaker or more diverse or less diverse. The information that we assume will 
generalize from these groups of test-takers to the target population is the equating 
relationship between the two forms of the test. 
 
The main advantage of the counterbalanced design is the same as that of the single-group 
design: accurate results from a relatively small number of test-takers. Its main 
disadvantage is that it can almost never be designed into an operational administration of 
a test. Usually this equating design requires a special equating study for collecting the 
data.  

The equivalent-groups design 
In most equating situations, there is no opportunity to have the same test-takers take two 
forms of the test. What can we do if each test-taker will take only one form of the test? 
The simplest solution is to have a separate group of test-takers take each form, making 
sure that the two groups are equal in the knowledge and skills that the test measures. But 
can we actually do that? We can never get the groups to be exactly equal, but if the 
number of test-takers is large, we can come close. The best way to do it is by “spiraling 
the books.” That term is testing jargon for packaging the two forms of the test in 
alternating sequence: new form, reference form, new form, reference form, etc. This way 
of assigning test forms to test-takers assures that the groups of test-takers taking the two 
forms will be similar in many ways: where they took the test, when they took the test, 
what part of the testing room they sat in, and so on. If any of these differences are 
associated with differences in the test-takers’ knowledge or skills, “spiraling the books” 
will tend to balance out the differences. For example, the test-takers at a particular testing 
site may be especially strong. “Spiraling the books” guarantees that the test-takers at that 
testing site will be divided equally between the new form and the reference form.10 
 
The assumption of the equivalent-groups design is that the equating relationship 
observed between the two groups of test-takers will generalize to the target population. 
The two groups may differ from the target population as long as they both differ from the 
target population in the same way. If the group taking the new form is stronger than the 

                                                 
10 An additional benefit—one that has nothing to do with equating—is that alternating the test forms makes 
it hard for a test-taker to cheat by copying answers from the test-taker at the next desk.  
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target population, the group taking the reference form must also be stronger than the 
target population, to the same degree. 
 
The equivalent-groups design has some important practical advantages. It is fairly 
convenient to administer—provided that the people administering the test understand that 
they have to distribute the test booklets in the order in which they were packaged. This 
design can often be used in an operational test administration. It does not require the two 
forms of the test to have any questions in common, but it can be used even if they do. 
 
The equivalent-groups design also has some major limitations. Its main limitation is that 
in order to produce accurate equating results, it requires large numbers of test-takers. In 
comparison to the counterbalanced design, the equivalent-groups design could require 
from five to fifteen times as many test-takers for the same degree of accuracy.11 A second 
limitation has to do with test security. In most cases the reference form will have been 
administered previously. On some tests, there is a substantial risk that many test-takers 
will have seen (and even studied) the questions on a test form that has been used 
previously. On those tests, it may be impossible to get valid equating data from an 
equivalent-groups design. 

The internal-anchor design 
In many large-scale testing programs, the testing is organized into “administrations.” 
Each administration is a short period of time (possibly a single day) in which a large 
number of test-takers take the same test. Typically, all the test-takers who take the test at 
a particular administration take the same form of the test. If that form of the test has not 
been given before, the scores will need to be equated to the scores on a form that was 
given at a previous administration. In this very common situation, we cannot assume that 
the groups of test-takers taking the new form and the reference form are equal in the 
skills the test measures. To equate the scores, we need a link between those groups—
some kind of information that will show us how the groups differ in the skills the test 
measures. In testing jargon, this link is called an “anchor.” 
 
The best kind of an anchor for equating is a test of the same knowledge and skills that the 
test measures. The more similar the anchor is to the test, the better. The anchor can be 
either “internal” or “external.” An internal anchor is part of the test itself; an external 
anchor is not. An internal anchor consists of a set of questions from the reference form 
that have been included in the new form. These repeated questions are often called 
“common items,” and equating in an internal-anchor design is often called “common-

                                                 
11 This comparison depends on the correlation between scores on the two test forms, because the accuracy 
of equating in a counterbalanced design depends on how strongly the two forms are correlated, while the 
accuracy of equating in an equivalent-groups design does not. The comparison is based on formulas from 
Angoff, 1984, pp. 97, 103. However, the formula for the equivalent-groups design (p. 97) assumes the 
groups to be independent random samples from the target population. Therefore, it somewhat overestimates 
the number of test-takers required when the groups are created by “spiraling” the test forms. 

www.ztcprep.com



31 
 
 

item” equating. Some other terms used to refer to the repeated questions are “anchor 
items” and “equating items.” Taken together, the repeated questions are sometimes 
referred to as the “equating set.” 
 
The main advantage of the internal-anchor design is that it does not complicate the 
administration of the test. However, it does complicate the test development process. It 
also requires a second exposure for the repeated questions, which can cause a security 
problem for some high-stakes tests. 
 
The key assumption of the internal-anchor design is that the meaning of the anchor score 
does not change. A given score on the anchor is assumed to indicate the same level of 
knowledge or skill for a test-taker taking the new form as for a test-taker taking the 
reference form. Therefore, the repeated questions must not change in difficulty. If  
the reference form has been released to test-takers or to their teachers, any questions 
repeated from that form are likely to have become easier. If there has been a security 
breach on the reference form, the questions repeated from that form are likely to have 
become easier for at least some of the test-takers. (In this case, it may be possible to 
identify the test-takers who are likely to have had prior knowledge of the repeated 
questions and to exclude their scores from the equating analysis.) 
 
Sometimes the difficulty of a repeated question can change as a result of circumstances.12 
The knowledge needed to answer the question may become more commonly taught (or 
less commonly taught). Sometimes world events will bring the topic of a test question to 
the attention of the general public. For example, questions about the geography of Iraq 
would tend to be easier in 2003 than they were in previous years. How can we take these 
possibilities into account? We modify our assumption. We assume that most of the 
repeated questions have not changed systematically in difficulty. This assumption makes 
it possible to identify those questions that have changed in difficulty and remove them 
from the anchor by using “difficulty plots.”  
 
Figure 9 is an example of a difficulty plot. Each data point in the plot represents one of 
the repeated questions. The horizontal position of the data point represents the percent-
correct on the question for the test-takers taking the new form. The vertical position of 
the point represents the percent-correct on the question for the test-takers taking the 
reference form. These two difficulty measures agree strongly, as is usually the case. But 
occasionally we find one or more data points that do not fit the pattern. These “outliers” 
are the data points for questions that have become easier or more difficult in the new 
form than they were in the reference form. Notice, in the upper right corner of Figure 9, 
one data point seems to stand out from the rest. This data point represents a question that 
was answered correctly by nearly all the test-takers taking the new form, but by only 
about three-quarters of those taking the reference form (even though the reference form 
                                                 
12 The difficulty of a question can also change if the position of the question in the test changes, e.g., from 
the end of the reference form to the middle of the new form. I’ll say more about this later. 
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group did better than the new-form group on most of the questions). Before we did the 
equating, we removed this question from the anchor and treated it as if it had been a new 
question instead of a repeated question. 
 

Difficulty plot: percent correct
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Figure 9. Difficulty plot: percent of test-takers answering correctly in each group. 

 
 
Sometimes it is useful to make two difficulty plots for the same set of repeated questions 
using different difficulty statistics. For at least one testing program that I work on, we 
make a set of “p-plots” and a set of “delta plots.” In the “p-plots,” difficulty is measured 
by percent-correct statistic. In the “delta plots,” difficulty is measured by a nonlinear 
transformation13 of the percent-correct. The two difficulty statistics give us different 
perspectives on the data. Using the “delta” statistic tends to make the data points in the 
plot line up better, but it exaggerates differences in the percent-correct for very easy or 

                                                 
13 The transformation is based on the cumulative normal distribution function, reversed so that harder 
questions receive higher values of “delta.” 
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very hard questions. The “p-plots” give us a better picture of the effect that removing a 
question from the anchor will have on the test-takers’ anchor scores.  
 
The two main limitations of the internal-anchor design have to do with the possibility that 
the repeated questions may change in difficulty. First, we have to be able to assume that 
most of the repeated questions will not change in difficulty from the reference form to the 
new form. Second, we need enough repeated questions that if some of them do change in 
difficulty, they can be identified and removed from the anchor. This second limitation 
makes the internal-anchor design unsuitable for equating a test that has only a small 
number of separate questions, problems, or tasks. Many essay tests and performance 
assessments fall into this category. For example, suppose that you needed to equate 
scores on a test consisting of only six separate problems. How many of those problems 
could you include in an internal anchor? Two or possibly three at most. A difficulty plot 
with only two or three data points would not be very useful for determining whether any 
of those repeated problems had changed in difficulty.  
 
Sometimes it is necessary to use an internal anchor that does not measure all the skills 
that the full test measures. Suppose, for example, that we want to use an internal-anchor 
design to equate scores on alternate forms of a test made up of fifty multiple-choice 
questions and one essay question. In this case, the internal anchor will consist entirely of 
multiple-choice questions. (The test developers will not want to use the same essay topic 
on all forms of the test!) Equating through the all-multiple-choice anchor requires the 
assumption that the groups taking the new form and the reference form differ just as 
much in the skills measured by the full test as in the skills measured by the multiple-
choice portion alone. We make this assumption, not because we have a lot of confidence 
in it, but because the alternatives are worse. We have to report scores on the new form, 
one way or another. Whatever we do, we will be implicitly making an assumption about 
the skills of the test-takers taking the new form and of those who took the reference form. 
We can assume the two groups are equal in the skills that the full test measures. 
Alternatively, we can assume that the difference between the groups is shown by their 
unadjusted raw scores on the full test. Or we can assume that the difference between the 
groups is shown by their scores on an internal anchor consisting of repeated multiple-
choice questions—the same questions for both groups. Given these three choices, we 
generally prefer to believe the information from the multiple-choice anchor. 

The external-anchor design 
An external anchor is a common measure, separate from the test itself, that we can use to 
compare the group of test-takers taking the new form with the group taking the reference 
form. Ideally, the external anchor should measure the same knowledge and skills as the 
test to be equated, using questions or problems in the same format, administered under 
the same conditions. In reality we cannot often come close to this ideal. However, there is 
one well-known test on which the scores are equated through an external-anchor design 
that meets these ideal conditions—the SAT I.  
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The anchor for the SAT Verbal test is actually a short version of the full test with entirely 
different questions. Here is how the data collection plan works. Each form of the SAT 
includes an “equating” section that is different for different test-takers. There are several 
versions of the “equating” section, and these are spiraled among the test-takers, so that 
the group of test-takers taking each version is a representative sample of the full group of 
test-takers for that administration. Some test-takers get a short version of the Verbal test, 
while others get a short version of the Math test. For some of the test-takers, the equating 
section is an anchor that links the current form to a previous form. For others, the 
equating section is an anchor that will link the current form to a future form. Because the 
anchor is not taken by all the test-takers, the scores on the anchor are not included in 
computing the individual scores on the test. The anchor scores are used only for equating. 
An equating plan of this complexity would probably be impractical for most other tests. 
 
A more typical example of equating through an external-anchor equating design is the 
equating of an essay test intended to measure the test-takers’ writing skills. The anchor 
for equating scores on this test is a multiple-choice test, taken by the same test-takers, 
that requires the test-taker to distinguish between examples of well written and poorly 
written sentences. The scores on different forms of the multiple-choice test are equated 
through an internal anchor (“common items”), and then the adjusted scores on the 
multiple-choice test are used as an external anchor for equating scores on different forms 
of the essay test.  
 
More terminology. When we equate test scores, we often refer to the groups of test-takers 
as “equating samples.” We call the group that took the new form the “new form equating 
sample”; we call the group that took the reference form the “reference form equating 
sample.” Calling the groups “samples” reminds us that we want the equating results to 
generalize beyond the people whose test responses we are using. However, we have to 
remember that the equating samples often are not representative samples from the target 
population. 
 
The key assumption of the external-anchor design is that the groups of test-takers taking 
the two forms to be equated (the equating samples) will differ in the same way on the 
anchor as they do on the test to be equated. In the writing-test example, the assumption is 
that the two equating samples will differ just as much in their ability to write good essays 
as in their ability to distinguish between well written and poorly written sentences. We do 
not have the data to test this assumption, but we can get some related evidence. We can 
compute the correlation between the (essay) test scores and the (multiple-choice) anchor 
scores within each equating sample. If those correlations are strong, we will know that 
the anchor is a good indicator of the within-group differences between individual test-
takers in the knowledge or skills that the test measures. In that case, we will be more 
inclined to trust the anchor as an indicator of the between-group differences, i.e., between 
the equating samples.  
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If the anchor for an external equating involves administering exactly the same questions 
to both equating samples, and if it includes enough questions, it may be wise to use a 
difficulty plot to identify and remove from the anchor score any questions that changed in 
difficulty. 
 
Probably the main advantage of the external-anchor design is that it can be used in 
situations where other equating designs cannot be used. It is often used to equate scores 
on different forms of an essay test or a performance assessment. In these cases, the 
external anchor is usually the test-taker’s equated score on a multiple-choice test 
measuring closely related knowledge and skills, as in the writing-test example described 
above. Another example, from the Praxis program, involves a constructed-response test 
in math. This test requires the test-taker to construct mathematical proofs and to solve 
mathematical problems, showing the reasoning behind the solution. The external anchor 
for equating scores on this test is the adjusted score on a multiple-choice test that the test-
takers must also take, with questions drawn from the same areas of mathematics. 
 
The main disadvantage of the external-anchor design is the difficulty of finding a good 
external anchor. If the anchor measures different skills than the test to be equated, the 
equating samples may differ more in the skills measured by the anchor than they do in the 
skills measured by the test—or vice versa. In that case, the key assumption of the 
external-anchor design will be violated, and the equating will be inaccurate.  
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Test: Equating Designs 
At this point in the class, we pause while the students take a short, self-administered test 
on equating designs. Then we discuss the answers to identify and clear up any 
misunderstandings that may have occurred. Here is the test. The answers appear in a 
separate section in the back of this book. 
 
To answer the following questions, choose from the list of equating designs. Some 
questions have more than one answer. In some cases, the answer may be “none of these.” 
 

Which equating designs require the same test-takers to take both forms of the test? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
 none of these  

 

 

Which one equating design requires the largest number of test-takers for an accurate 
equating? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
  

 
 

Which two equating designs will produce accurate results with the smallest number of 
test-takers? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
  

 
 

For which one equating design is it most useful to “spiral” (alternate) the test forms 
among test-takers? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
  

 

www.ztcprep.com



37 
 
 

Which one equating design does not work well if the test has very few questions? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
  

 
 

Which one equating design is the best one to use when the two “forms” to be equated are 
just two different ways of scoring an essay test? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
  

 
 

Which equating designs can be used for equipercentile equating? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
 none of these  

 

 

Which equating designs make it possible to compute a difficulty adjustment that will be 
correct for every test-taker taking the new form? 

single-group  
 equivalent-groups  

 counterbalanced  
internal-anchor    

 external-anchor  
 none of these  
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Selecting “Common Items” for an Internal Anchor 
I said earlier that using an internal-anchor design for equating complicates the test 
development process. If a new form of a test is to be equated through an internal anchor, 
the test developers may have to decide which form to use as the reference form, and they 
will surely have to decide which questions from the reference form to include in the new 
form.   
 
If there is more than one previous form of the test that could possibly serve as the 
reference form, the test developers have to choose one. The first requirement is that the 
questions on the reference form must not have been made available to future test-takers—
either officially or unofficially. If there have been changes in the content or format of the 
test, the reference form should be one that is as similar as possible to the new form. It 
should be a form that has been administered to a fairly large number of test-takers. The 
group of test-takers who took the reference form should be fairly typical of the target 
population, with respect to any characteristics that may affect their responses to the 
questions. For example, if the target population consists of students from many types of 
schools, the reference form should not be a form that was taken mainly by students at one 
particular type of school.  
 
Once the test developers have selected the reference form, they have to select the 
questions to include in the anchor—the “common items.” I have a list of guidelines that I 
give test developers to help them make these choices. The list begins with the guidelines 
that I consider most important: 
 
Include enough questions from the reference form. At ETS we like an internal anchor 
to include at least 20 common items—more, if the test is longer than 100 questions. But 
we’re not rigid about this number. If the test contains only 35 questions, we probably 
wouldn’t include 20 of them in an internal anchor. 
 
Choose a set of questions that resembles the full test in content and format. This 
guideline is important because the anchor is supposed to reflect differences between the 
groups taking the new form and the reference form in the knowledge and skills that the 
test measures. Ideally, the internal anchor should be a shorter version of the full test with 
the different types of content represented in the same proportion. 
 
Include questions that represent the full range of difficulty. If the anchor doesn’t 
include enough difficult questions, it won’t reflect the abilities of the strongest test-takers. 
The equating won’t be accurate at the high end of the score range. Similarly, if the anchor 
doesn’t include enough easy questions, it won’t reflect the abilities of the weakest test-
takers. The equating won’t be accurate at the low end. 
 
Don’t include any questions that have been changed. A change in a test question is 
likely to make it easier or harder. Often a test developer will want to change a question to 
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prevent the test-takers from misinterpreting it. That kind of change is usually a good 
thing, but not if the question is intended to be part of the anchor. If fewer test-takers 
misinterpret the question, the question will become easier. It won’t accurately reflect the 
differences between the groups taking the reference form (containing the original version 
of the question) and the new form (containing the revised version). I tell the test 
developers, “If you have to change a question, take it out of the common-item equating 
set.”   
 
Try to avoid breaking up an “item set.” An “item set” is a group of questions based on 
a common stimulus: a reading passage, a description of an experiment, a picture, a graph, 
a map, a cartoon, or some such thing. If any items from an item set are going to be 
included in the common-item anchor, it is important to include the whole item set in the 
new form. The reason is that a test-taker’s response to a question can be affected by the 
questions that come shortly before it in the test. However, it is not necessary to include 
the whole item set in the common-item anchor. Sometimes a test developer wants to use 
an item set as part of the anchor but also wants to change one of the questions. In that 
case, I tell the test developer to put the entire item set into the new form, but to include 
only the unchanged questions in the common-item anchor. 
 
The remaining guidelines are not as important, but they are still worth considering: 
 
Don’t use questions at the end of the test as anchor items, unless the time limit is 
very generous. The problem here is that some of the test-takers will be under time 
pressure when they get to these questions. And that time pressure can be different for 
test-takers taking the new form than it was for those who took the reference form. For 
example, the new form may contain more time-consuming questions early in the test, 
leaving the test-takers less time for the questions at the end. (Even if nearly all the test-
takers answer the last few questions on the test, their performance may be affected by the 
time limit. Many test-takers may answer the last few questions incorrectly because they 
don’t have time to reason carefully and to consider all the possibilities.) I consider this 
guideline less important than the previous ones because if this problem occurs, we can 
often see it in the difficulty plots. Still, it is better not to have to remove questions from 
the anchor. 
 
Put each anchor item in approximately the same position in the new form as it was 
in the reference form. It is not necessary to give each anchor item exactly the same 
position in the new form that it had in the reference form, but it is best to avoid moving 
an anchor item to a much later position or a much earlier position. The test-takers may 
respond differently to a question if it appears at a very different point in the test. 
 
Other things being equal, choose common items that correlate well with the total 
score. When our test developers select common items for an internal anchor, they look at 
statistics computed from the responses of the test-takers who took the reference form. 
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Questions that correlate more strongly with the total test score tend to provide more 
information about the relative strength of the groups taking the new form and the 
reference form. However, this is a low-priority guideline. It is not nearly as important as 
selecting a group of anchor items that represents the content and format of the full test. 
 

Scale Drift 
As you know by now, in the real world of testing we don’t know the score distributions 
on both forms in the target population. We have to equate on the basis of the data we 
have, and the equating adjustments we compute from our data may not be quite correct 
for the target population. The difference between our equating results and the results we 
would get if we knew the distributions in the target population is called “equating 
error.”14 The equating error is usually not large enough to cause a problem. But even if 
the equating error is small, we could have a problem if it is repeatedly in the same 
direction.  
 
Suppose the equating of Form B to Form A makes the adjusted scores on Form B slightly 
too high. This small equating error may not matter—for comparing scores on Form B 
with scores on Form A. But suppose the equating of Form C to Form B also makes the 
adjusted scores on Form C slightly too high. Again, it may not matter—for comparing 
scores on Form C with scores on Form B. However, in a chain of several equatings, small 
equating errors in the same direction can accumulate so that (for example) scaled scores 
on Form F will not be comparable to scaled scores on Form A. This phenomenon is 
called “scale drift.” 
 
The way to find out whether scale drift has occurred (and, if so, how much the scale has 
drifted) is to equate a recent form—one that is already on scale—directly to a reference 
form that is several steps back in the chain of equatings. In the previous example, we 
might equate Form F directly to Form A.  
 
Sometimes the pattern of equatings is a single chain with each form equated to the one 
immediately before it. In this case, scale drift can affect comparisons over long time 
periods, but it will not be a problem for comparing the scores of test-takers who took the 
test fairly close together in time. However, sometimes the pattern of equating is a pair of 
parallel chains, as illustrated in Figure 10. In this case, the two chains of test forms are 
called “equating strains.” In Figure 10, Forms B, D, and F form one equating strain; 
Forms C and E are another. The danger is that there may be scale drift in only one of the 
two equating strains. Even worse, there could be scale drift in both equating strains in 
opposite directions. In that case, the scaled scores on two forms given close together in 
time (e.g., scaled scores on Forms E and F in Figure 10) may not be comparable.  

                                                 
14 The use of the word “error” in this phrase does not mean that someone has made a mistake in equating 
the test scores. It means only that the results are not exactly correct for the target population.  
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Figure 10. Equating strains. 

 
 
The way to prevent this problem is illustrated in Figure 11. Form G is equated to both 
Form E and Form F, bringing the two equating strains together. If the results of the two 
equatings are similar, we can use either one or (more likely) average them. If the results 
of the two equatings differ substantially, we have to investigate (as best we can) the 
reason for the difference. Based on what we find, we may choose to disregard one of the 
two equatings and use only the other. For example, we might find that the equating of 
Form E to Form C was based on an unusual group of test-takers. In that case, we might 
decide to disregard the equating of Form G to Form E and use only the equating of Form 
G to Form F. If we could not find any reason to trust one of the two equatings more than 
the other, we would probably average the results of the two equatings to determine the 
raw-to-scale conversion for Form G. To average the results of the two equatings, we 
would simply average the two exact (unrounded) scaled scores corresponding to each raw 
score on Form G.15 

                                                 
15 Mathematically, the results of this procedure are not quite symmetric. If you average the two raw-to-scale 
conversions and find the inverse of the resulting function, it will not be exactly equal to the function that 
you get if you find the inverses of the two separate raw-to-scale conversions and average them. In practice, 
the difference is negligible. 
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Figure 11. Equating strains brought together. 

 

The Standard Error of Equating 
Unless we know the score distribution on both the new form and the reference form in the 
entire target population, our equating results will be affected by sampling variability. For 
any given raw score on the new form, the adjusted score is a statistic computed from a 
sample of test-takers. If it were computed from the scores of a different sample of test-
takers, its value could be different. 
 
Suppose we could repeat the equating a very large number of times, each time with 
different test-takers taking the two forms—but the same numbers of test-takers each time. 
We could then choose a particular raw score on the new form and compare the equated 
scores that resulted from all those replications of the equating process. Those equated 
scores might be similar, but they would not all be exactly the same, so we could compute 
their distribution. This distribution would be the sampling distribution of a statistic: the 
equated score for that particular raw score. The standard deviation of this sampling 
distribution would show how much the equating results vary from one sample of test-
takers to another. 
 
The standard deviation of the sampling distribution of the equated score has a name; we 
call it the “standard error of equating.” It is not a quantity that we can actually compute, 
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but sometimes we can estimate it.16 The larger the sample of test-takers whose scores are 
included in the equating analysis, the smaller the standard error of equating will be. To be 
more precise, we really should call it the “conditional standard error of equating” because 
the standard error of equating is different for different raw scores. In the middle of the 
score distribution, where most of the test-takers’ scores are located, the standard error of 
equating tends to be quite small. At the high and low ends of the score distribution, where 
the data are sparse, the standard error of equating tends to be larger. 

Equating Without an Anchor 
When the equating data come from a single-group design, a counterbalanced design, or 
an equivalent-groups design (anything but an anchor design), equating is relatively 
simple. When you use one of these equating designs, you are assuming that the equating 
relationship you observe will generalize to the target population. If you are doing linear 
equating, you simply use the observed means and standard deviations to compute the 
equating relationship, just as you would if you knew the means and standard deviations in 
the target population. By using the means and standard deviations you observed in your 
data, you are not necessarily assuming that they are good estimates of the means and 
standard deviations in the target population. You are assuming only that the equating 
relationship that those means and standard deviations imply is a good estimate of the 
equating relationship in the target population. The means and standard deviations in your 
data can differ from those in the target population, as long as they differ from the target 
population in the same way (and to the same extent) on both forms of the test. 
 
For equipercentile equating, the procedure is a bit more complex. Unless your equating 
samples are extremely large, you will need to include a smoothing step. If you have a 
good way to presmooth the score distributions—one that preserves their shape while 
removing the irregularities—you should use it before you compute the equipercentile 
relationship. If you don’t have a good way to smooth the score distributions before 
equating, go ahead and compute the equipercentile equating from the observed score 
distributions, but then smooth the equating relationship that results. This procedure is 
often referred to as “postsmoothing.” What you want is a smoothing method that removes 
the irregularities, while preserving the shape and position of the equating curve. 
 
One problem that may arise with equipercentile equating is that of very sparse data—or 
no data at all—at the lower and upper ends of the score range. In this situation, linear 
equating will give you a set of equated scores (although they may well be the wrong 
ones!), but equipercentile equating will leave the equated scores undetermined. You may 
have to extrapolate the equating relationship beyond the range of the scores in your 
data.17  

                                                 
16 See Kolen and Brennan (1995), Angoff (1984, pp. 97, 103, 106), and Liou and Cheng (1995). 
17 “Kernel equating” (Holland & Thayer, 1989) estimates equating relationships that extend beyond the 
observed data.  
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Equating in an Anchor Design 
Equating in an anchor design is more complex than equating in a single-group or 
equivalent-groups design. It is not simply a matter of equating two score distributions 
from the same group of test-takers or from groups that are assumed to be equal in the 
knowledge and skills measured by the test. We need the anchor because we cannot assume 
that the groups taking the two different forms are equal in their knowledge and skills. 
Somehow we have to use the information from the anchor score to adjust for the 
differences between the groups taking the new form and the reference form—the new 
form equating sample and the reference form equating sample. We have to assume that 
some kind of information we can compute in the equating samples will generalize to the 
target population. 
 
Figure 12 is an illustration of the anchor equating problem. The figure contains four 
boxes. Each box refers to a particular form of the test and a particular group of test-
takers. The two boxes at the left refer to the new form; the two boxes at the right refer to 
the reference form. The box at the top refers to the new form equating sample; the box in 
the middle refers to the reference form equating sample; and the two boxes at the bottom 
refer to the target population. 
 
Each box represents the scatterplot of a two-way score distribution—a plot of the test-
takers’ scores on the new form or the reference form and on the anchor. The horizontal 
axis represents the anchor score; the vertical axis represents the score on the new form or 
the reference form. If we had a large group of test-takers taking both the test and the 
anchor, and we plotted a data point for each test-taker, the data points would form a cloud 
with a roughly elliptical shape. That is what the ellipses shown in two of the boxes 
represent—the scatterplots of data that we can actually observe. The boxes representing 
the scatterplots for the target population are empty because in most equating situations 
we cannot observe the scores of the target population. 
 
In the situation pictured in Figure 12, the new form equating sample has high scores on 
the anchor. Those high anchor scores indicate that this group is a strong group. But the 
scores of this strong group on the new form are not particularly high. Therefore, we can 
infer that the new form is difficult. The reference form equating sample has much lower 
scores on the anchor. Those low anchor scores indicate that this group is a weak group. 
But the scores of this weak group on the reference form are not particularly low. 
Therefore, we can infer that the reference form is easy. An equating adjustment should 
compensate for the difference in the difficulty of the test forms by adjusting any given 
score on the new form to a higher score on the reference form. I will use this same 
situation to illustrate each of the anchor equating methods so you can see how each 
method leads to an adjustment in this direction. 
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Figure 12. Equating in an anchor design. 

 
 
I should point out that in Figure 12 (and in the figures that follow it) the differences in the 
abilities of the groups of test-takers and in the difficulty of the test forms are much larger 
than we are likely to see in a real testing situation. I have exaggerated these differences to 
show clearly how each equating method works—how it makes (or, in some cases, fails to 
make) an appropriate adjustment to the scores. 
 
All methods of equating in an anchor design involve assumptions—explicit or implicit—
about those two squares at the bottom of Figure 12. Each anchor equating method 
assumes that something about the squares with the ellipses will generalize to the empty 
squares below them. Each method assumes that something about the statistical 
relationship between scores on the new form and the anchor in the group that actually 
took the new form will generalize to the target population—and similarly for the 
reference form. The different anchor equating methods are different because they make 
different assumptions as to which aspects of the statistical relationship will generalize to 
the target population. 
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Two ways to use the anchor scores 
Anchor equating methods can be classified into two types according to the way they use 
the information from the anchor. Each of these types includes at least one method for 
linear equating and at least one method for equipercentile equating. 
 
The first approach to using the anchor scores is “chained equating.” It consists of 
equating the scores on the new form to scores on the anchor and then equating the scores on 
the anchor to scores on the reference form. The “chain” formed by these two equatings 
links the scores on the new form to scores on the reference form. Chained equating 
assumes that the statistical relationship that generalizes from each equating sample to the 
target population is an equating relationship.18 
 
The second approach to using the anchor scores is what I call “conditioning on the 
anchor.” (It is the same technique that many statisticians call “poststratification.”)  
In this approach, we use the anchor score as if it were a predictor variable. For each 
possible score on the anchor, we estimate the distribution (or possibly just the mean and 
standard deviation) of scores on the new form and on the reference form in the target 
population. These estimates are then used for equating as if they had actually been 
observed in the target population. This type of equating assumes that the relationship that 
generalizes from each equating sample to the target population is a conditional 
relationship. 
 
Table 5 illustrates this classification. We typically refer to the two chained equating 
methods simply as “chained linear” equating and “chained equipercentile” equating. The 
methods that condition on the anchor are “frequency estimation”—another descriptive 
term—and the “Tucker” and “Levine” methods. These two methods are named after the 
people who first proposed them, Ledyard Tucker and Richard Levine.19 
 

                                                 
18 Many testing experts would argue that the term “equating” is not appropriate here, unless the test and the 
anchor measure the same knowledge and skills and produce equally reliable scores (which never happens). 
Those experts would insist that this relationship between test scores and anchor scores be described only as 
a “symmetric linking” although, mathematically and operationally, it is indistinguishable from an equating 
relationship.   
19 I have occasionally heard chained equipercentile equating referred to as “Lindquist” equating. 
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Table 5. Methods of Equating in an Anchor Design 

  Chained equating:  
equate new form to anchor; 

equate anchor to reference form

 Conditioning on the anchor: 
estimate score distributions or 

means & SDs in target population 
     

Linear  
equating 

 Chained linear method  Tucker method, 
Levine method 

     
Equipercentile 

equating 
 Chained equipercentile method  Frequency estimation 

equipercentile method 
 
 

Chained Equating 
The logic of chained equipercentile equating is illustrated in Figure 13. It is fairly 
straightforward. The relationship that is assumed to generalize from each equating sample 
to the target population is an equipercentile equating relationship.  
 
In Figure 13, the curved line in the upper left box represents the equipercentile equating 
relationship between scores on the new form and scores on the anchor. That curve is 
copied into the lower left box because the equating relationship that it represents is 
assumed to generalize to the target population. Similarly, the curve in the middle right 
box represents the equipercentile equating relationship between scores on the reference 
form and on the anchor. That curve is copied into the lower right box because the 
relationship is assumed to generalize to the target population. 
 
The arrows in the bottom row of boxes illustrate the equating of a score on the new form 
to the corresponding score on the reference form. In the lower left box, we start with a 
given score on the new form and find the corresponding score on the anchor. We then 
find that score on the anchor in the lower right box and find the corresponding score on 
the reference form, completing the chain. In Figure 13, you can see how this process 
causes the selected score on the difficult new form to adjust to a higher score on the easy 
reference form.  
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Figure 13. Chained equipercentile equating. 

 
 
The logic of chained linear equating is the same as that of chained equipercentile 
equating. The only difference is that the equating relationships that are assumed to 
generalize from each equating sample to the target population are linear equating 
relationships. Chained linear equating is illustrated in Figure 14. 
 
Although the logic is the same, chained linear equating is simpler to implement than 
chained equipercentile equating. You can use the basic linear equating formula to derive 
a formula for chained linear equating by writing it twice and substituting one equation 
into the other. (Your notation will have to indicate which equating sample each mean or 
standard deviation refers to.) The result will be a simple formula that translates any score 
on the new form into the corresponding score on the reference form. However, when you 
insert a possible score on the new form into the formula, the solution will generally be a 
number that is not a possible score on the reference form. Usually, it will be a point in 
between two possible scores, but it could be a point outside the range of scores possible 
on the reference form. 
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Figure 14. Chained linear equating. 

 

Conditioning on the Anchor: Frequency Estimation Equating 
The logic of equating by conditioning on the anchor is more complicated. It is easiest to 
explain in the context of frequency estimation equating because, although the operations 
are tedious, the logic is fairly straightforward. Figure 15 illustrates frequency estimation 
equating in a situation where the scores on the new form and the reference form correlate 
strongly with the scores on the anchor. The statistical relationships that are assumed to 
generalize from each equating sample to the target population are conditional 
distributions: the distributions of scores on the new form and the reference form, 
computed separately for test-takers with each particular score on the anchor. These 
conditional distributions are represented in Figure 15 by the short vertical lines. The 
vertical lines in the upper boxes are copied into the lower boxes to indicate the 
assumption that the conditional distributions generalize to the target population.20  

                                                 
20 If the group that took the new form includes very few test-takers with a particular score on the anchor (or 
none at all), we have a problem. A good way to solve the problem is to smooth the bivariate distribution of 
scores on the new form and the anchor. Log-linear smoothing (Holland & Thayer, 2000) solves the 
problem nicely. Without a good way to smooth the bivariate distribution, we would have to combine score 
levels on the anchor, to have an adequate number of test-takers at each score level. 
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Figure 15. Frequency estimation equipercentile equating;  
test and anchor strongly correlated. 

 
 
To do the equating, we need one additional piece of information: the distribution of 
scores on the anchor in the target population. How can we get that information? One way 
would be to define the target population by specifying a distribution of scores on the 
anchor. Another way would be to use the anchor scores of the new form equating sample 
to estimate the anchor score distribution in the target population. A more general version 
of this approach is to combine the anchor score distributions of the two equating samples. 
If you take this approach, you can apply weights to the data to represent the two equating 
samples in any desired proportion. That way, you can have a target population in which 
(for example) 75 percent of the test-takers are like those in the new form equating sample 
and 25 percent are like those in the reference form equating sample. A target population 
generated in this way is called a “synthetic population.”  
 
Now let’s focus on the box in the lower left corner of Figure 15, representing the scores 
of the target population on the new form and on the anchor. Imagine a fine grid dividing 
the box into a matrix of tiny cells. The matrix has a row for each possible score on the 
new form and a column for each possible score on the anchor. This matrix refers to the 
target population, and we know the distribution of their anchor scores. Therefore, we 
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know the proportion of the target population in each column of the matrix. We also 
know, for any column of the matrix, what proportion of the test-takers are in each cell. 
This information comes from the conditional distributions that we are assuming to be the 
same in the target population as they are in the new form equating sample. If we multiply 
these two proportions, we have an estimate of the proportion of the entire target 
population that is in the cell for that specific combination of scores on the anchor and the 
new form. We can write that proportion into the appropriate cell of the matrix. And we 
can do the same thing for all the other cells. When we have finished this operation, we 
will have a proportion written into each cell of the matrix. And these proportions, for the 
whole matrix, will sum to 1.00.  
 
Now we can specify a particular score on the new form and focus on its row of the 
matrix. If we sum the estimated proportions for all the cells in that row, we will have an 
estimate of the proportion of the target population who have that score on the new form. 
If we repeat this step for each score on the new form, we will have an estimate of the 
distribution of scores on the new form in the target population. 
 
We can then apply exactly the same procedure to estimate the distribution of scores on 
the reference form in the target population. And when we have estimated the score 
distributions on both the new form and the reference form, we can use those estimated 
distributions to do an equipercentile equating, as if we had actually observed the score 
distributions in the target population. 
 
I have tried to make the illustrations in Figure 15 show how frequency estimation 
equipercentile equating adjusts for the difference between the harder new form and the 
easier reference form. Looking at the lower left box of Figure 15, you can see that the 
test-takers with low anchor scores are estimated to get very low scores on the difficult 
new form. Even the test-takers with high scores on the anchor are estimated to get only 
moderately high scores on the new form. Therefore, the estimated distribution of scores 
on the new form in the target population will include lots of low scores and very few high 
scores. This distribution is shown at the left edge of the lower left box in Figure 15. 
 
Looking at the lower right box of Figure 15, you can see that the test-takers with low 
scores on the anchor are estimated to get only moderately low scores on the easy 
reference form. The test-takers with high scores on the anchor are estimated to get very 
high scores on the reference form. Therefore, the estimated distribution of scores on the 
reference form in the target population will include very few low scores and lots of high 
scores. This distribution is shown at the left edge of the lower right box in Figure 15. 
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Now look at the estimated distributions on the new form and the reference form in Figure 
15. Choose a score on the new form and find its estimated percentile rank in the target 
population—the proportion of the area below it in the score distribution estimated for the 
new form. Then find the score on the reference form that has the same percentile rank—
the same proportion of the area below it in the score distribution estimated for the 
reference form. Notice that the score on the reference form is substantially higher. The 
equipercentile equating will compensate for the difference between the hard new form 
and the easy reference form. 

Frequency estimation equating when the correlations are weak 
Figure 16 illustrates frequency estimation equating in a situation where the anchor 
correlates weakly with the scores on the new form and the reference form. I have drawn 
Figure 16 as if the correlations were extremely weak to make the illustration clear. The 
weaker the correlations and the bigger the difference between the anchor scores of the 
two groups, the stronger the effect that I am trying to illustrate.  
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Figure 16. Frequency estimation equipercentile equating; test  
and anchor weakly correlated. 
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As in all the previous examples, the new form equating sample is strong (their scores on 
the anchor are high), but the new form is difficult (the scores of this strong group on the 
new form are not particularly high). The reference form equating sample is weak (their 
scores on the anchor are low), but the reference form is easy (the scores of this weak 
group on the reference form are not particularly low). Because the new form is difficult 
and the reference form is easy, a given score on the new form should equate to a 
substantially higher score on the reference form. 
 
Now look at the vertical lines representing the conditional distributions in Figure 16. 
Because the correlations are weak, the vertical lines are longer than those in Figure 15, 
indicating that the conditional distributions are more spread out. And there is not as much 
difference between the conditional distributions for the test-takers with low anchor scores 
and those with high anchor scores. On the difficult new form, the few test-takers with low 
anchor scores do only slightly worse than those with high anchor scores. As a result, the 
new-form score distribution estimated for the target population is not much lower than 
that of the new form equating sample. On the easy reference form, the few test-takers 
with high anchor scores do only slightly better than those with low anchor scores. As a 
result, the reference form score distribution estimated for the target population is not 
much higher than that of the reference form equating sample. 
 
Because of the weak correlations in the equating samples, the score distributions 
estimated for the target population on the difficult new form and on the easy reference 
form are not very different. Therefore, the equipercentile equating based on these 
distributions will make only a small adjustment, even though the new form is much 
harder than the reference form. Frequency estimation equipercentile equating in this 
situation will not adequately compensate for the difference in difficulty. 
 
This problem with frequency estimation equating occurs, to some extent, whenever the 
two equating samples differ in their scores on the anchor and the correlations of the test 
scores with the anchor scores are less than perfect. To the extent that the correlations 
depart from 1.00, frequency estimation equating will adjust as if the equating samples 
were more similar in ability than the anchor scores indicate. The result will be a biased 
estimate of the equating adjustment in the target population.21 The size of the bias will 
depend on how much the two equating samples differ in ability and how weak the 
correlations are. If the anchor score distributions of the two equating samples are not very 
different or if the correlations between the test scores and the anchor scores are very high, 
the bias is small. In many cases, it is not large enough to worry about. But sometimes it is 
large enough to be cause for concern. 
 

                                                 
21 I am using the term “biased” the way statisticians use it, to mean that the expected value of an equated 
score estimated by this method differs systematically from the equated score in the target population. 
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This problem does not occur with chained equating because the statistical relationships 
that are assumed to generalize to the target population in chained equating are not 
affected by the size of the correlation between the test scores and the anchor scores.  

Conditioning on the Anchor: Tucker Equating 
To do linear equating by conditioning on the anchor, it is not necessary to estimate the full 
distribution of scores on each form in the target population. All you need to estimate are the 
means and standard deviations in the target population. When you condition on the anchor 
for linear equating, you do not need to assume that the whole conditional distribution 
generalizes to the target population—only the conditional mean and standard deviation. 
And you can simplify the problem further by making some assumptions that are often made 
in other statistical applications. You can assume that in the target population  

1. the conditional mean score on the new form (or the reference form) increases 
steadily (i.e., linearly) with scores on the anchor and 

2. the conditional standard deviation is the same at all levels of the anchor score. 

Assumption (1) implies that you can use a simple formula to estimate the conditional 
means in the target population. Assumption (2) implies that you can estimate a single value 
for the conditional standard deviation.22 Tucker equating assumes that what generalizes 
from the new form sample to the target population are (1) the linear equation for estimating 
the conditional mean on the new form for a given score on the anchor, and (2) the estimate 
of the conditional standard deviation of the scores on the new form for any given score on the 
anchor. And it makes the corresponding assumptions for the reference form. 
 
To estimate the mean and standard deviation of scores on the new form in the target 
population, you still need two more pieces of information: the mean and standard deviation 
of the anchor scores in the target population. As in frequency estimation, you can simply 
specify these values as a way of specifying the target population. Alternatively, you can 
assume that the new form equating sample is a representative sample of the target 
population. Under this assumption, the mean and standard deviation of the anchor scores in 
the new form equating sample will be estimates of those in the target population. Or you 
can specify a synthetic population that is a weighted combination of the equating samples. 
In this case, you can compute the mean and standard deviation of the anchor scores in the 
synthetic population from the means and standard deviations in the equating samples. 
 
When you have specified or estimated the mean and standard deviation of the anchor 
scores in the target population, you can derive formulas for estimating the mean and 
standard deviation of scores on the new form and on the reference form in the target 
population.  

                                                 
22 If you have studied regression analysis, you will recognize the estimation formula in assumption (1) as a 
linear regression equation and the estimated conditional standard deviation in assumption (2) as the residual 
standard deviation. 
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(It takes quite a bit of algebra, and I don’t intend to go into it here.)23 And when you have 
formulas for estimating the means and standard deviations in the target population for 
both the new form and the reference form, you can substitute the estimates into the basic 
formula for linear equating. The result will be a formula for Tucker equating.  
 
Tucker equating is difficult to illustrate in a diagram like the ones I have used for chained 
equating and for frequency estimation equating. I will try to show how Tucker equating 
works for a test-taker whose anchor score is at the mean of the target population. Figure 
17 illustrates Tucker equating in a situation in which the anchor correlates strongly with 
the scores on the new form and the reference form. As in all the previous examples, the 
new form equating sample is a strong group (high scores on the anchor), but the new form 
is difficult (the scores of this strong group are not particularly high). The reference form 
equating sample is a weak group (low scores on the anchor), but the reference form is easy 
(the scores of this weak group are not particularly low). The equating should show a given 
score on the new form corresponding to a substantially higher score on the reference form. 
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Figure 17. Tucker equating; test and anchor strongly correlated. 

                                                 
23 See Kolen and Brennan (1995), pp. 105-111. 
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In the upper left box, the slanting line represents the equation for estimating the 
conditional mean on the new form conditioning on the anchor score. Notice that the 
slanting line extends beyond the ellipse, mostly at the left (low anchor scores). Even 
though the new form equating sample includes very few people with low anchor scores, the 
equation for estimating the conditional mean on the new form applies to the whole range of 
scores on the anchor. And notice that when the slanting line is extended into the range of 
low scores on the anchor, it gets quite low. Test-takers with low scores on the anchor are 
estimated to get very low scores on the new form.  
 
Similarly, in the upper right box, the slanting line represents the equation for estimating 
the conditional mean on the reference form, conditioning on the anchor score. Again, the 
slanting line extends beyond the ellipse, but now mostly at the right (high anchor scores). 
Even though the reference form equating sample includes very few people with high 
anchor scores, the equation for estimating the conditional mean on the reference form 
applies to the whole range of scores on the anchor. And when the slanting line is 
extended into the range of high scores on the anchor, it gets quite high. Test-takers with 
high scores on the anchor are estimated to get very high scores on the reference form. 
 
The equation for estimating the conditional mean score on the new form for any given 
anchor score is assumed to generalize to the target population. I have illustrated that 
assumption by copying the slanting line from the upper left box into the lower left box. In 
the lower left box, the vertical line indicates the mean anchor score of the target 
population. Look at the point where this vertical line intersects the slanting line. The height 
of that point indicates the conditional mean score on the new form estimated for test-takers 
whose anchor scores are at the mean of the target population. That new-form score is the 
estimated mean for the target population. 
 
Similarly, the slanting line from the middle right box (for the reference form equating 
sample) is copied into the lower right box (for the target population). In the lower right 
box, the vertical line indicates the mean anchor score of the target population. Look at the 
point where the vertical line intersects the slanting line. The height of that point indicates 
the conditional mean score on the reference form estimated for test-takers whose anchor 
scores are at the mean of the target population. That reference form score is the estimated 
mean for the target population. 
 
Comparing the two boxes in the bottom row, notice that the estimated mean score of the 
target population is much higher on the reference form than on the new form. A linear 
equating based on these estimated mean scores will show the lower mean score on the 
difficult new form as being comparable to the higher mean score on the easy reference 
form. In this way, Tucker equating compensates for the difference in the difficulty of the 
two forms. 
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Tucker equating when the correlations are weak 
Figure 18 illustrates Tucker equating in a situation where the correlations between scores 
on the test and scores on the anchor are weak. I have drawn Figure 18 as if the 
correlations were extremely weak to make the illustration clear. The weaker the 
correlations and the bigger the difference between the anchor scores of the two groups, 
the stronger the effect that I am trying to illustrate. I have also added vertical lines in the 
upper two boxes to indicate the mean score on the anchor in each equating sample. 
Notice that the mean anchor score is higher for the new form equating sample than for the 
reference form equating sample—the vertical line is farther to the right. 
 
Looking at the box for the new form equating sample at the upper left, notice the shallow 
slope of the slanting line. The conditional mean score on the new form is not much lower 
for test-takers with low anchor scores than for test-takers with high anchor scores. Notice 
that when the slanting line is extended to the left for low anchor scores, the conditional 
mean score on the new form drops only slightly. Now look what happens when this weak 
relationship is generalized to the target population. Even though the mean anchor score 
of the target population is noticeably lower than that of the new-form equating sample, 
the estimated mean score on the new form is not much lower in the target population 
than in the strong new-form equating sample. 
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Figure 18. Tucker equating; test and anchor weakly correlated. 
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Similarly, in the box for the reference form equating sample, the line that estimates the 
conditional mean score on the reference form has a shallow slope. The conditional mean 
score on the reference form is not much higher for test-takers with high anchor scores 
than that for test-takers with low anchor scores. Notice that when the slanting line is 
extended to the right for high anchor scores, the conditional mean score on the reference 
form increases only slightly. 
 
Again, this weak relationship gets generalized to the target population. Even though the 
mean anchor score of the target population is noticeably higher than that of the reference 
form equating sample, the estimated mean score on the reference form is not much 
higher in the target population than in the weak reference form equating sample. 
 
You can see in the two boxes at the bottom of Figure 16 that in this situation, the 
estimated mean scores of the target population on the difficult new form and on the easy 
reference form do not differ very much. The equating adjustment will be small. It will not 
fully compensate for the difference in the difficulty of the two forms of the test.  
 
As with frequency estimation equating, this problem occurs, to some extent, whenever 
the anchor scores of the equating samples differ and the correlations of the test scores 
with the anchor scores are less than perfect. To the extent that the correlations depart 
from 1.00, Tucker equating will adjust as if the equating samples were more similar in 
ability than the anchor scores indicate. The result will be a biased estimate of the equating 
adjustment in the target population. The size of the bias will depend on how much the 
two equating samples differ in ability and how weak the correlations are. 
 
Notice that if the correlations were .00, the slanting lines that estimate the conditional 
mean scores on the new form and on the reference form would become horizontal. The 
estimated conditional mean on the new form for any possible anchor score would be the 
mean of the whole group taking the new form. Therefore, the target population’s 
estimated mean score on the new form would be the same as the mean score of the new 
form equating sample. Similarly, the target population’s estimated mean score on the 
reference form would be the same as the mean score of the reference form equating 
sample. In this situation—correlations of .00—Tucker equating would be the same as 
linear equating in an equivalent-groups design. 
 
Chained linear equating does not have this bias because in chained equating, the 
relationships that are assumed to generalize to the target population are symmetric 
relationships. The slopes of the lines are not affected by the size of the correlations 
between the scores on the test and on the anchor.  
 
Some people would argue that if the correlations between the test scores and anchor 
scores are weak, an equating adjustment should do what the Tucker equating method 
does—adjust as if the two equating samples were more similar in ability than the anchor 
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scores imply. In effect, the Tucker method is saying, “To the extent that the anchor 
correlates with the test scores, I will use it to adjust for differences between the equating 
samples. To the extent that it does not, I will assume the equating samples to be equal in 
the knowledge or skill the test measures.” You can think of Tucker equating as a 
compromise between chained linear equating and a linear equating that assumes the 
equating samples to be of equal ability. When the anchor scores correlate perfectly with 
the test scores, the Tucker method becomes identical to the chained linear method. When 
the anchor scores are uncorrelated with the test scores, the Tucker method becomes 
identical to a linear equating based on the assumption of equivalent groups.  
 
This rationale makes sense—if the two equating samples can be considered to be random 
samples from the same population of test-takers and if the reason for the imperfect 
correlations between the anchor scores and test scores is that the anchor and the test 
measure different knowledge or skills. However, there is another reason that correlations 
between test scores and anchor scores are less than perfect. The test scores and the anchor 
scores are not perfectly reliable. To the extent that the less-than-perfect correlations are 
caused by less-than-perfect reliability, the Tucker method will yield the wrong 
adjustment. 

Correcting for Imperfect Reliability: Levine Equating 
One way to remove the bias from Tucker equating without abandoning the logic of the 
Tucker method is to base the equating on the statistical relationships of “true scores” on 
the new form, the reference form, and the anchor. A test-taker’s “true score” is the score 
the test-taker would earn if the test were perfectly reliable. No individual test-taker’s 
“true score” can ever be known, but it is possible to estimate statistical relationships 
involving “true scores” on the test and the anchor—the relationships that correspond to 
those used in Tucker equating. If you assume that these relationships of “true scores” 
generalize from the equating samples to the target population, you can get estimates of 
the means and standard deviations of scores on the new form and the reference form in 
the target population—estimates that are different from those in the Tucker method. This 
method based on “true scores” is called the Levine method.  
 
There are two versions of the Levine method, and a discussion of the difference between 
them is beyond the scope of this booklet.24 Both versions of the Levine method require 
good estimates of the reliability of the test scores and the anchor scores in the two 
equating samples.  
 
Choosing an Anchor Equating Method 
Which method of equating in an anchor design is best? Among people whose work 
includes the equating of test scores, there is not now (i.e., as of 2004) a consensus on this 

                                                 
24 See Kolen and Brennan (1995, pp. 111-120). 
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question. I tend to prefer chained equating. It avoids the bias that results from 
conditioning on the anchor when the equating samples differ in ability and the anchor 
scores are not highly reliable. Some research that my colleagues and I have done25 has 
convinced me that this bias is real, predictable, and explainable. I also prefer 
equipercentile equating over linear equating for three reasons: 

1. I think equipercentile equating is based on a better definition of “relative position 
in the group.”  

2. Equipercentile equating takes into account the possibility that the target 
population’s score distributions on the new form and on the reference form may 
have different shapes.  

3. Equipercentile equating avoids (or at least minimizes) the problem of out-of-range 
adjusted scores.  

For these reasons, I tend to prefer chained equipercentile equating. However, the chained 
equipercentile method does have some disadvantages and some limitations. It requires a 
good smoothing method. In the regions of the score scale where the data are sparse, one 
or two test-takers can have an exaggerated effect on the equating. In regions of the score 
scale where there are no data (e.g., if no test-takers have very high scores on the new 
form), the equating relationship cannot be determined.  
 
My colleagues and I often apply two or more equating methods to the same data and 
compare the results before deciding which method to use. Occasionally we will use the 
results of one method in some parts of the raw-score range and the results of another 
method in other parts of the raw-score range. Often the choice of an equating method 
comes down to a question of what is believable, given what we know about the test and 
the population of test-takers. 
 

                                                 
25 See Livingston, Dorans, and Wright (1990). 
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Test: Anchor Equating 
At this point, we end the class with a short, self-administered test on anchor equating. 
Here is the test. The answers appear in a separate section in the back of this book. 
 
Answer each question in a short phrase or sentence. 
 
A test developer is assembling a new form of a test that will be equated to a previous form 
by means of an internal anchor consisting of repeated questions (“common items”). The 
reference form included a set of four questions based on a particular reading passage, and 
the test developer wants to include those questions in the anchor. However, one of those 
questions has been changed. What should the statistician tell the test developer to do?  
 
 
 
 
In what part of the score distribution does the standard error of equating tend to be 
smallest?  
 
 
 
 
In chained equipercentile equating, what statistical relationship is assumed to generalize 
from the equating sample to the target population?  
 
 
 
 
In Tucker equating, what statistical relationship is assumed to generalize from the 
equating sample to the target population?  
 
 
 
 
Name an anchor equating method that equates the new form to the anchor in one group of 
test-takers and equates the anchor to the reference form in another group of test-takers.  
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Name an anchor equating method that uses data from the anchor test to estimate the mean 
and standard deviation of the scores on each form in the target population. 
 
 
 
 
Name an anchor equating method that tends to give better results if the score distributions 
are smoothed before the method is applied. 
 
 
 
 
Name an anchor equating method that requires reliability estimates for the full test and 
the anchor.  
 
 
 
 
Name an anchor equating method that produces an equating conversion that is correct for 
every examinee in the new form equating sample.  
 
 
 
 
Briefly describe the conditions under which the Tucker equating method is heavily 
biased.  
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Answers to Tests 

Answers to test: Linear and equipercentile equating 
Its purpose is to adjust the scores for differences in the difficulty of the questions on the test. 

True of linear equating?  Yes. True of equipercentile equating?  Yes. 
That’s what equating is all about.   

 
 

It requires data on the performance of people taking the test. 

True of linear equating?  Yes. True of equipercentile equating?  Yes. 
Like any other statistical procedure, equating requires relevant data. 

 
 

It produces an adjustment that is correct for every person in the target population. 

True of linear equating?  No. True of equipercentile equating?  No. 
It is not possible to make an adjustment that is correct for every individual. 

 
 

The adjustment to the scores consists of multiplying by one number and then adding 
another. 

True of linear equating?  Yes. True of equipercentile equating?  No. 
This is what makes linear equating linear. 

 
 

The results can be improved by smoothing the score distributions before equating. 

True of linear equating?  No. True of equipercentile equating?  Yes. 
There’s no need to smooth for linear equating, which uses only the means and 
standard deviations. 
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The adjusted scores on the new form will generally fall in between the scores that are 
actually possible on the reference form. 

True of linear equating?  Yes. True of equipercentile equating?  Yes. 
True of any kind of equating. 

 

 

Some adjusted scores on the new form can be several points higher than the highest score 
possible on the reference form. 

True of linear equating?  Yes. True of equipercentile equating?  No. 
The100th percentile cannot be more than a fraction of a point higher than the highest 
possible score. 

 

 

The adjusted score on the new form is the best prediction of the score the test-taker would 
get on the reference form. 

True of linear equating?  No. True of equipercentile equating?  No. 
For a test-taker whose score is above the mean, the best prediction is somewhat 
lower than the adjusted score. For a test-taker whose score is below the mean, the 
best prediction is somewhat higher than the adjusted score. Equating is not the same 
as prediction. Prediction is not the same as equating. 
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Answers to test: Equating designs 
Which equating designs require the same test-takers to take both forms of the test? 

Single-group and counterbalanced. 
 

Which one equating design requires the largest number of test-takers for an accurate 
equating?  

Equivalent-groups 

 

Which two equating designs will produce accurate results with the smallest number of 
test-takers?  

Single-group and counterbalanced. Having the same test-takers take both forms 
makes for a statistically powerful design.   

 

For which one equating design is it most useful to “spiral” (alternate) the test forms 
among test-takers?  

Equivalent-groups. This design won’t work unless the groups are equal in ability. 
 

Which one equating design does not work well if the test has very few questions? 

Internal-anchor. The anchor scores would not be very reliable, and you would not be 
able to determine whether the questions in the anchor had changed in difficulty.   

 

Which one equating design is the best one to use when the two “forms” to be equated are 
just two different ways of scoring an essay test?  

Single-group.  
 

Which equating designs can be used for equipercentile equating?  

All of them. 
 

Which equating designs make it possible to compute a difficulty adjustment that will be 
correct for every test-taker taking the new form?  

None of them. It is not possible to make such an adjustment. 
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Answers to test: Anchor equating 
A test developer is assembling a new form of a test that will be equated to a previous form 
by means of an internal anchor consisting of repeated questions (“common items”). The 
reference form included a set of four questions based on a particular reading passage, and 
the test developer wants to include those questions in the anchor. However, one of those 
questions has been changed. What should the statistician tell the test developer to do?  

Include the whole item set in the new form, but include only the three unchanged items in 
the anchor score. 

 

In what part of the score distribution does the standard error of equating tend to be 
smallest?  

The middle of the distribution, where there are many test-takers. 
 

In chained equipercentile equating, what statistical relationship is assumed to generalize 
from each equating sample to the target population?  

The equipercentile equating of scores on the new form (or the reference form) and on 
the anchor. 

 

In Tucker equating, what statistical relationship is assumed to generalize from each 
equating sample to the target population?  

The equation that estimates the conditional mean score on the test (new form or 
reference form) for test-takers with a given anchor score. Give yourself a bonus point 
if you remembered that the value of the conditional standard deviation is also 
assumed to generalize to the target population. 

 

Name an anchor equating method that equates the new form to the anchor in one group of 
test-takers and equates the anchor to the reference form in another group of test-takers.  

Chained linear equating or chained equipercentile equating. 
 

Name an anchor equating method that uses data from the anchor test to estimate the mean 
and standard deviation of the scores on the new form and the reference form in the target 
population.  

Tucker equating or Levine equating. (Frequency estimation equipercentile equating 
estimates the entire score distribution in the target population, so it might possibly be 
considered a correct answer.) 

 

Name an anchor equating method that tends to give better results if the score distributions 
are smoothed before the method is applied.  

Chained equipercentile equating or frequency estimation equipercentile equating. 
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Name an anchor equating method that requires reliability estimates for the full test and 
the anchor.   

Levine equating. 
 

Name an anchor equating method that produces an equating conversion that is correct for 
every test-taker in the new form equating sample.  

There is no such method. 
 

Briefly describe the conditions under which the Tucker equating method is heavily 
biased.  

The equating samples differ greatly on the anchor, and the correlations between the 
test and the anchor are weak.  
(Alternatively: The equating samples differ greatly on the anchor, and the scores on 
the anchor are unreliable.) 
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